Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity

Sizheng Ma, Vijay Varma, Leo C. Stein, Francois Foucart, Matthew D. Duez, Lawrence E. Kidder, Harald P. Pfeiffer, Mark A. Scheel

Phys. Rev. D 107, 124051 (2023) [arXiv:2304.11836] [doi:10.1103/PhysRevD.107.124051]

We present a numerical-relativity simulation of a black hole - neutron star merger in scalar-tensor (ST) gravity with binary parameters consistent with the gravitational wave event GW200115. In this exploratory simulation, we consider the Damour-Esposito-Farese extension to Brans-Dicke theory, and maximize the effect of spontaneous scalarization by choosing a soft equation of state and ST theory parameters at the edge of known constraints. We extrapolate the gravitational waves, including tensor and scalar (breathing) modes, to future null-infinity. The numerical waveforms undergo ~ 22 wave cycles before the merger, and are in good agreement with predictions from post-Newtonian theory during the inspiral. We find the ST system evolves faster than its general-relativity (GR) counterpart due to dipole radiation, merging a full gravitational-wave cycle before the GR counterpart. This enables easy differentiation between the ST waveforms and GR in the context of parameter estimation. However, we find that dipole radiation’s effect may be partially degenerate with the NS tidal deformability during the late inspiral stage, and a full Bayesian analysis is necessary to fully understand the degeneracies between ST and binary parameters in GR.