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Problem Set 6

Due: Thurs., Apr. 16, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work.

1. Abstract 3+1 basics. Let (M, gab) be a 4-manifold with Lorentzian metric g (with Levi-Civita
connection ∇), and suppose we have a foliation by hypersurfaces of a global “time” function t :M→ R,
each leaf being a spacelike hypersurface Σt. Let the future-pointing, timelike, unit normal be

na ≡ −α∇at = −∇at√
−gab∇at∇bt

, (1)

where the lapse α is defined through gab∇at∇bt = −1/α2.

(a) Show that the one-form field na is irrotational, which is to say that it satisfies n[a∇bnc] = 0.

Now recall that we decompose each tangent space into the subspace TΣt and the orthogonal complement
in the span of na, by writing the induced metric γab on TΣt (sometimes called the “first fundamental
form”),

γab = gab + nanb . (2)

Then the (1,1) version γa
b is an (idempotent) projection operator. The induced metric γab has Levi-

Civita connection Da. This connection only knows how to act on purely spatial tensors – recall that a
tensor is purely spatial iff it vanishes when na is contracted into any index slot. The simple way to
define Da is

DcT
a1a2···

b1··· = γc′

c γ
a1
a′

1
· · · γb′

1
b1
· · · ∇c′T a′

1a′
2···

b′
1··· . (3)

(b) Show that Da is indeed metric-compatible with γbc.
(c) Show that the Leibniz rule Da(vbwb) = vb(Dawb) + (Dav

b)wb holds only if vb and wb are purely
spatial.

If an observer was moving along a world-line with tangent na, then her proper acceleration 4-vector
would be aa ≡ nb∇bn

a.

(d) Show that the acceleration vector is a purely spatial vector.
(e) Show that the acceleration can be written in terms of the spatial gradient of the lapse function,

aa = Da lnα . (4)

Now we’re interested in the extrinsic curvature (sometimes called the “second fundamental form”),
found by studying how na varies from point to point. Our convention is

Kab ≡ −γc
a∇cnb , (5)

which is a purely spatial tensor.

(f) To ensure this is purely spatial we did not need a γ projector on the b index – show why.
(g) Show the equality Kab = −∇anb − naab.
(h) Show that Kab is a symmetric tensor.
(i) Show the equality Kab = − 1

2Lnγab.
(j) Show that LnKab is purely spatial.
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2. A coordinate example. Take the Schwarzschild spacetime in standard Schwarzschild coordinates.
Define a foliation by level sets of the function

T = t+ 4M
[√

r

2M + 1
2 ln

(√
r/2M − 1√
r/2M + 1

)]
. (6)

(a) Compute the unit normal na and the induced metric γab.
(b) Calculate the extrinsic curvature Kab.
(c) Show that the Schwarzschild metric can be rewritten using T as a time coordinate instead of t,

resulting in:

ds2 = −dT 2 + (dr +
√

2M/r dT )2 + r2dΩ2 . (7)

From this calculation you can see that the T = const. surfaces are intrinsically flat.

3. A 4+1 example. Let’s start from 5-dimensional Minkowski space with coordinates zA,

ds2 = ηABdz
AdzB = −(dz0)2 + (dz1)2 + (dz2)2 + (dz3)2 + (dz4)2 . (8)

We construct a map from a 4-dimensional manifold with coordinates xa = (t, χ, θ, φ) into this 5-d
manifold, thus defining a 4-d hypersurface in 5-d. The coordinate maps for embedding are zA(xa):

z0 = a sinh(t/a) , z1 = a cosh(t/a) cosχ , z2 = a cosh(t/a) sinχ cos θ , (9)
z3 = a cosh(t/a) sinχ sin θ cosφ , z4 = a cosh(t/a) sinχ sin θ sinφ . (10)

(a) Find a single coordinate function Φ(zA) such that Φ = 0 defines the same submanifold.
(b) Compute the unit normal nA and the tangent vectors eA

(a) = ∂zA/∂xa.

(c) Compute the induced 4-metric γab = ηABe
A
a e

B
b , and comment on the physical meaning of this

metric.
(d) Compute the extrinsic curvature Kab, then use the Gauss-Codazzi equations to show that the

4-metric is a metric of constant curvature,

(4)Rabcd = 1
a2 (γacγbd − γadγbc) . (11)
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