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Problem Set 6 — SOLUTIONS

Due: Thurs., Apr. 16, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work.

1. Abstract 3+1 basics. Let (M, gab) be a 4-manifold with Lorentzian metric g (with Levi-Civita
connection ∇), and suppose we have a foliation by hypersurfaces of a global “time” function t :M→ R,
each leaf being a spacelike hypersurface Σt. Let the future-pointing, timelike, unit normal be

na ≡ −α∇at = −∇at√
−gab∇at∇bt

, (1)

where the lapse α is defined through gab∇at∇bt = −1/α2.

(a) Show that the one-form field na is irrotational, which is to say that it satisfies n[a∇bnc] = 0.
Solution: Expand all the definitions:

6n[a∇bnc] = α[(∇at)∇b(α∇ct) + (∇bt)∇c(α∇at) + (∇ct)∇a(α∇bt)
− (∇at)∇c(α∇bt)− (∇bt)∇a(α∇ct)− (∇ct)∇b(α∇at)] . (2)

Now apply the product rule, and using the fact that the ∇ connection is torsion free, we have that
∇a∇bt = ∇b∇at. Match up antisymmetric combinations of the second derivatives of t and they
cancel. So we are left with

6n[a∇bnc] = α[(∇at)(∇bα)∇ct+ (∇bt)(∇cα)∇at+ (∇ct)(∇aα)∇bt
− (∇at)(∇cα)∇bt− (∇bt)(∇aα)∇ct− (∇ct)(∇bα)∇at] (3)

= 6α(∇[at)(∇bα)(∇c]t) = 0 , (4)

since the tensor product (∇at)(∇ct) is symmetric, but is being antisymmetrized.

Now recall that we decompose each tangent space into the subspace TΣt and the orthogonal complement
in the span of na, by writing the induced metric γab on TΣt (sometimes called the “first fundamental
form”),

γab = gab + nanb . (5)

Then the (1,1) version γab is an (idempotent) projection operator. The induced metric γab has Levi-
Civita connection Da. This connection only knows how to act on purely spatial tensors – recall that a
tensor is purely spatial iff it vanishes when na is contracted into any index slot. The simple way to
define Da is

DcT
a1a2···

b1··· = γc
′

c γ
a1
a′

1
· · · γb

′
1
b1
· · · ∇c′T a

′
1a

′
2···

b′
1··· . (6)

(b) Show that Da is indeed metric-compatible with γbc.
Solution: We want to show that Daγbc = 0. Expanding the definition, use metric-compatibility
of g and ∇, then use the Leibniz rule,

Daγbc = γa
′

a γ
b′

b γ
c′

c ∇a′(gb′c′ + nb′nc′) = γa
′

a γ
b′

b γ
c′

c ∇a′(nb′nc′) (7)

= γa
′

a γ
b′

b γ
c′

c [(∇a′nb′)nc′ + nb′(∇a′nc′)] = 0 . (8)

The resulting terms on the RHS contain either γb′

b nb′ = 0 or γc′

c nc′ = 0, so both terms vanish.
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(c) Show that the Leibniz rule Da(vbwb) = vb(Dawb) + (Dav
b)wb holds only if vb and wb are purely

spatial.
Solution: Suppose va is not purely spatial, then we write it as va = v‖n

a + va⊥, where va⊥ = γaa′va
′

⊥
is perpendicular to na, and v‖ ≡ −vana is a scalar. Then using the definition of Da, we would find

Da(vbwb) = γa
′

a ∇a′ [v‖nbwb + vb⊥wb] = γa
′

a ∇a′ [vb⊥wb] = γa
′

a [vb⊥(∇a′wb) + (∇a′vb⊥)wb] (9)
= vb⊥(Dawb) + (Dav

b)wb 6= vb(Dawb) + (Dav
b)wb . (10)

In going from (9) to (10), we used the fact that va⊥ = γaa′va
′

⊥ and similarly wa = γaa′wa
′ , then noting

that the γ projectors are acting on all free indices of a ∇ derivative, thus giving a D derivative.
If wa was also not purely spatial, there would be an additional v‖w‖ term to consider, with the
algebra working the same way. So we see that the Leibniz rule only works if both vectors are
purely spatial.

If an observer was moving along a world-line with tangent na, then her proper acceleration 4-vector
would be aa ≡ nb∇bna.

(d) Show that the acceleration vector is a purely spatial vector.
Solution: Since the magnitude of nb is constant, nbnb = −1,

0 = ∇a(nbnb) = 2nb∇anb . (11)

Thus the acceleration vector ab ≡ na∇anb vanishes if its index is contracted with the timelike unit
normal, nbab = nbn

a∇anb = 0. This is the criterion for being purely spatial.
(e) Show that the acceleration can be written in terms of the spatial gradient of the lapse function,

aa = Da lnα . (12)

Solution: As an intermediate result, let’s compute the 4-dimensional gradient of α = [−(∇ct)(∇ct)]−1/2,

∇aα = −1
2 α3∇a[−(∇ct)(∇ct)] = α3(∇ct)∇a∇ct . (13)

Next for the spatial derivative of lnα,

Da lnα = γa
′

a

1
α
∇a′α (14)

Da lnα =
[
δa

′

a + α2(∇at)(∇a
′
t)
]
α2(∇ct)(∇a′∇ct) . (15)

Now let’s compare with the expansion of aa ≡ na
′∇a′na,

aa ≡ na
′
∇a′na = α(∇a

′
t)∇a′(α∇at) = α(∇a

′
t) [(∇a′α)(∇at) + α∇a′∇at] (16)

aa = α(∇a
′
t) [(∇a′α)(∇at) + α∇a′∇at] = α(∇a

′
t)
[
α3(∇ct)(∇a′∇ct)(∇at) + α∇a′∇at

]
. (17)

Comparing the right-hand sides of (15) and (17), and using the fact that ∇ is torsion-free, we see
that the two expressions are the same.

Now we’re interested in the extrinsic curvature (sometimes called the “second fundamental form”),
found by studying how na varies from point to point. Our convention is

Kab ≡ −γca∇cnb , (18)

which is a purely spatial tensor.
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(f) To ensure this is purely spatial we did not need a γ projector on the b index – show why.
Solution: An index b of a tensor is a spatial index if the tensor vanishes when contracted with
nb, so let’s check:

nbKab = −γcanb∇cnb = −γca
1
2∇c(n

bnb) = 0 , (19)

since nbnb = −1 is a constant.
(g) Show the equality Kab = −∇anb − naab.

Solution: Expanding the definition,

Kab ≡ −γca∇cnb = −(δca + nan
c)∇cnb = −∇anb − na(nc∇cnb) = −∇anb − naab , (20)

where the last equality comes from the definition of ab ≡ nc∇cnb.
(h) Show that Kab is a symmetric tensor.

Solution: Let’s return to part 1a, where we showed that n[a∇bnc] = 0. Contract this identity
with na:

0 = 6n[a∇bnc] = na (na∇bnc + nb∇cna + nc∇anb − na∇cnb − nb∇anc − nc∇bnac) (21)
0 = −∇bnc + 0 + ncab +∇cnb − nbac − 0 , (22)

where we have used the fact that na∇bna = 0 because nana = −1 is a constant, and replacing
na∇anb = ab from the definition of the acceleration vector. But Eq. (22) is simply the expansion of
2K[ab]. So, we have shown that the antisymmetric part of Kab vanishes. Since Kab = K(ab) +K[ab],
we have shown that Kab = K(ab), the extrinsic curvature is symmetric.

(i) Show the equality Kab = − 1
2Lnγab.

Solution: Expanding the Lie derivative in terms of the ∇ connection,

−1
2Lnγab = − 1

2
[
nc∇cγab + 2γc(a∇b)nc

]
(23)

= − 1
2n

c∇c(gab + nanb)− γc(a∇b)nc (24)

= − 1
2n

c(∇cna)nb −
1
2n

cna(∇cnb)− gc(a∇b)nc + ncn(a∇b)nc (25)

= − 1
2aanb −

1
2naab − gc(a∇b)n

c + 0 (26)

= − 1
2aanb −

1
2naab −

1
2∇bna −

1
2∇anb = K(ab) = Kab . (27)

(j) Show that LnKab is purely spatial.
Solution: The slick way to do this is as follows. Since Kab is purely spatial, naKab = 0. Now
apply Ln to this latter equality, and expand using the Leibniz rule,

0 = Ln(naKab) = na(LnKab) + (Lnn
a)Kab . (28)

In the second term, we use the fact that Lvw
a = [v, w]a for the Lie derivative of a vector. So

here we get [n, n], which vanishes by antisymmetry of the Lie bracket. Thus we have found
0 = naLnKab, which means that LnKab is purely spatial.
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2. A coordinate example. Take the Schwarzschild spacetime in standard Schwarzschild coordinates.
Define a foliation by level sets of the function

T = t+ 4M
[√

r

2M + 1
2 ln

(√
r/2M − 1√
r/2M + 1

)]
. (29)

(a) Compute the unit normal na and the induced metric γab.
(b) Calculate the extrinsic curvature Kab.
(c) Show that the Schwarzschild metric can be rewritten using T as a time coordinate instead of t,

resulting in:

ds2 = −dT 2 + (dr +
√

2M/r dT )2 + r2dΩ2 . (30)

From this calculation you can see that the T = const. surfaces are intrinsically flat.

Solution: See the Mathematica notebook.

3. A 4+1 example. Let’s start from 5-dimensional Minkowski space with coordinates zA,

ds2 = ηABdz
AdzB = −(dz0)2 + (dz1)2 + (dz2)2 + (dz3)2 + (dz4)2 . (31)

We construct a map from a 4-dimensional manifold with coordinates xa = (t, χ, θ, φ) into this 5-d
manifold, thus defining a 4-d hypersurface in 5-d. The coordinate maps for embedding are zA(xa):

z0 = a sinh(t/a) , z1 = a cosh(t/a) cosχ , z2 = a cosh(t/a) sinχ cos θ , (32)
z3 = a cosh(t/a) sinχ sin θ cosφ , z4 = a cosh(t/a) sinχ sin θ sinφ . (33)

(a) Find a single coordinate function Φ(zA) such that Φ = 0 defines the same submanifold.
Solution: Define the function

σ(z) ≡ 1
2ηABz

AzB , (34)

which is half the squared geodesic distance from the origin to z (this is Synge’s world function
with argument at the origin). Let S be the image of the embedding above. Then notice that when
evaluating σ on S, we find

σ
∣∣∣
S

= a2

2 . (35)

So, a function Φ that vanishes on S can be built out of σ. The simplest such function is

Φ = σ − a2

2 . (36)

(b) Compute the unit normal nA and the tangent vectors eA(a) = ∂zA/∂xa.
Solution: Computing the unit normal is straightforward,

(dΦ)A = ηABz
B , (37)

nA = εηAB(dΦ)B√
εηBC(dΦ)B(dΦ)C

= εzA√
ε2σ

, (38)

where ε = ±1 is the norm n, ε = +1 when n is spacelike, and ε = −1 when n is timelike. Here
a2 > 0 which makes n spacelike, so ε = +1. Evaluated on the submanifold we get

nA
∣∣∣
S

= 1
a
zA . (39)
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Taking partial derivatives of the embedding functions, we get the coordinate tangent vectors
spanning the submanifold surface as the four columns of this matrix, in the order ∂t, ∂χ, ∂θ, ∂φ,

cosh( ta ) 0 0 0
sinh( ta ) cosχ −a cosh( ta ) sinχ 0 0
sinh( ta ) sinχ cos θ a cosh( ta ) cosχ cos θ −a cosh( ta ) sinχ sin θ 0
sinh( ta ) sinχ sin θ cosφ a cosh( ta ) cosχ sin θ cosφ a cosh( ta ) sinχ cos θ cosφ −a cosh( ta ) sinχ sin θ sinφ
sinh( ta ) sinχ sin θ sinφ a cosh( ta ) cosχ sin θ sinφ a cosh( ta ) sinχ cos θ sinφ a cosh( ta ) sinχ sin θ cosφ


(c) Compute the induced 4-metric γab = ηABe

A
a e

B
b , and comment on the physical meaning of this

metric.
Solution: Performing the contraction we find, in traditional notation,

γabdx
adxb = −dt2 + a2 cosh2(t/a)

[
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)] . (40)

This is a special case of the FLRW metric where the surfaces of t = const. are 3-spheres of radius
a cosh(t/a) (which is also the FLRW scale factor). It is one coordinate chart on the de Sitter
metric.

(d) Compute the extrinsic curvature Kab, then use the Gauss-Codazzi equations to show that the
4-metric is a metric of constant curvature,

(4)Rabcd = 1
a2 (γacγbd − γadγbc) . (41)

Solution: In terms of the unit normal and the basis eAa , we can write the pullback of the extrinsic
curvature as

Kab = −eAa eBb ∇AnB . (42)

(Notice that this sign convention agrees with MTW and Baumgarte+Shapiro, but differs from
Poisson). Since our ambient space is Minkowski with flat rectangular coordinates, the covariant
derivative is simply a partial derivative. Taking the partial derivatives, we have (using the notation
zA ≡ ηABzB)

∂AnB = ∂A
zB√
2σ

= 1√
2σ
∂AzB + zB∂A

1√
2σ

(43)

= 1√
2σ
ηAB −

1
2

1√
2
zBσ

−3/2∂Aσ (44)

∂AnB = 1√
2σ

(ηAB − nAnB) . (45)

Contracting with the bases, we find that the extrinsic curvature happens to be proportional to the
4-metric,

Kbc = −1
a
γbc . (46)

Now we will use the Gauss equation (notice that the MTW and Poisson sign conventions give the
same result here),

(5)RABCDe
A
a e

B
b e

C
c e

D
d = (4)Rabcd + ε(KadKbc −KacKbd) . (47)

Here, (5)RABCD = 0 since the ambient space is 5-d Minkowski; and we have ε = +1. Therefore we
find the desired result

(4)Rabcd = − 1
a2 (γadγbc − γacγbd) . (48)

This is the curvature tensor of a maximally symmetric space.
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