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Problem Set 5 — SOLUTIONS

Due: Thurs., Apr. 02, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work.

1. In class, we derived the formula for the leading gravitational radiation generated by a source,

hTT
ij (t, r) = 2

r

(
PikPjl −

1
2PijPkl

)
Ïkl(t− r) , (1)

where an overdot denotes derivative with respect to u = t−r, the second mass moment is Ikl =
∫
ρxkxldV ,

and the orthogonal projection tensor was Pij = δij − ninj with ni = xi/r.
Show that we get the same result if we replace Iij with the tracefree mass quadrupole tensor, Ikl ≡
Ikl − 1

3δklI, where I = δijIij is the trace.
Note that this is not trivial: there are two different types of trace removal. One is a three-dimensional
trace, the other a 2-dimensional trace in the space orthogonal to ni.
The significance here is that while I has 6 components, I only has 5 independent components, which is
the correct number for a radiative quadrupole (an l-pole should have 2l + 1 components).
Solution: If these two ways of writing hTT

ij are equivalent, then it is the projection of the trace-
adjustment that must vanish:(

PikPjl −
1
2PijPkl

)
Ïkl(t− r) =

(
PikPjl −

1
2PijPkl

)
Ïkl(t− r) (2)

=⇒ 0 =
(
PikPjl −

1
2PijPkl

)
1
3δklI . (3)

Let’s check if this is so, by using the properties of the projector tensors. The scalar factors I/3 are
irrelevant. (

PikPjl −
1
2PijPkl

)
δkl = PikPjk −

1
2PijPkk (4)

= Pij −
1
2Pij2 = 0 , (5)

since a projector squared is again a projector, and since the trace of the transverse projector is 2, the
dimension of the image.

2. Circular binary Let’s consider a circular binary with two point particle components of masses m1,m2
in a circular orbit lying in the x− y plane. Let the separation be R, and to start we’ll take the orbit to
be Newtonian. Now let’s compute the gravitational waves and the backreaction on the orbit. [Hint:
everything will be simpler in terms of a reduced mass µ = m1m2/(m1 +m2) going around a central
body of the total mass M = m1 +m2.]

(a) Compute the gravitational wave tensor hTT
ij at a point on the z axis.

Solution: We’ll use the quadrupole formula, so we need the stress-energy tensor component T 00

to find the quadrupole moment. For slow velocities,

T 00 = m1δ
3(x− r1(t)) +m2δ

3(x− r2(t)) , (6)
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(we drop O(v2) corrections due to relativistic effects). The quadrupole tensor is

Iij =
∫
d3xT 00xixj = m1r

i
1r
j
1 +m2r

i
2r
j
2 . (7)

For the trajectories we take just Newtonian circular orbits,

~r1 = 2Rµ
m1

(cos(Ωt), sin(Ωt), 0) (8)

~r2 = −2Rµ
m2

(cos(Ωt), sin(Ωt), 0) , (9)

where Ω =
√
GM/a3 =

√
GM/8R3. Plugging this into the quadrupole tensor we get

I = 4R2µ

 cos2(Ωt) cos(Ωt) sin(Ωt) 0
cos(Ωt) sin(Ωt) sin2(Ωt) 0

0 0 0

 (10)

= 2R2µ

1 + cos(2Ωt) sin(2Ωt) 0
sin(2Ωt) 1− cos(2Ωt) 0

0 0 0

 . (11)

Let’s take the second time derivative,

Ï = −8Ω2R2µ

cos(2Ωt) sin(2Ωt) 0
sin(2Ωt) − cos(2Ωt) 0

0 0 0

 . (12)

To evaluate the quadrupole formula on the z axis, we will use projectors to make the tensor
orthogonal to z – but notice that it already is! Then there’s a term to remove the trace – and
again notice that this is already trace-free. So our result is

h̄TT (t, 0, 0, z) = hTT = 2G
r

(PP − 1
2PP )Ï(tr) = 2G

r
Ï(tr) (13)

= −16Ω2R2µ

r

cos(2Ωtr) sin(2Ωtr) 0
sin(2Ωtr) − cos(2Ωtr) 0

0 0 0

 , (14)

where the retarded time is tr = t− |x| = t− z.
(b) Compute the energy loss due to gravitational waves (integrating over all emission directions).

Remember that this can only be interpreted correctly when averaged over a few cycles of the
radiation.
Solution: The easiest way to do this is with the leading power-loss formula in terms of the
trace-free quadrupole tensor,

PGW = −G5

〈...
I ij

...
I ij
〉
, (15)

where as above, Iij = Iij − 1
3δijI. Notice that here, the trace I = 4R2µ = const., so it vanishes

when taking time derivatives. This need not be the case, we’re lucky! Therefore we get to substitute...
I ij =

...
I ij . Calculating we get

PGW = −512GR4µ2Ω6

5 = −G
4M3µ2

5R5 . (16)

(c) Now claiming that energy is conserved,

d

dt
(Ekin. + Epot. + EGW) = 0 , (17)
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derive an equation for how the orbit must shrink, dR/dt. [Hint: Ekin. + Epot. combine into a very
simple expression of R for a bound orbit.]
Solution: Recall that for a bound Kepler orbit,

Ekin. + Epot. = −GMµ

2a = −GMµ

4R . (18)

So, using the preceding result, we get the ODE

− d

dt

GMµ

4R = −G
4M3µ2

5R5 (19)

GMµ

4
1
R2

dR

dt
= −G

4M3µ2

5R5 (20)

dR

dt
= −4G3M2µ

5R3 . (21)

(d) Derive the rate of change of orbital frequency Ω caused by emission of GWs. You should get
something in terms of the chirp mass,M≡ µ3/5M2/5, to some power.
Solution: Since Ω(t) =

√
GM/8R(t)−3/2,

dΩ
dt

= −3
2

√
GM

8 R(t)−5/2 dR

dt
= 6µ

5

√
G7M5

8R11 (22)

dΩ
dt

= 96
5

(
GMΩ11/5

)5/3
. (23)

(e) Integrate dΩ/dt to find the solution for Ω(t). This will diverge at some coalescence time Tcoal.
(this is an artifact of the point particle treatment of the bodies). Your solution should be some
power law for (Tcoal. − t).
Solution: Rearranging and then integrating,

5
96(GM)5/3

dΩ
Ω11/3 = dt (24)

5
96(GM)5/3

−3
8 Ω(t)−8/3 = t− Tcoal. , (25)

since we have the endpoint condition that Ω→∞ as t→ Tcoal.. Then solving we get

Ω(t) =
[

5
256(GM)5/3

1
Tcoal. − t

]3/8
. (26)

3. Wave equation for Riemann. While a metric perturbation is not gauge invariant, the linearized
Riemann tensor is when we’re on a flat background (do you remember why?). So, let’s get a wave
equation for the Riemann tensor itself.

(a) Starting from the Einstein equations and the full Bianchi identity,

∇aRbcde +∇bRcade +∇cRabde = 0 , (27)

derive an equation for some appropriate divergence,

∇aRabcd = 8πG[sources involving one derivative of T ] . (28)

Solution: Contract on two indices, the first coming from the set a, b, c and the second coming
from the set d, e. One term will be the divergence of Riemann, the other two will turn into Ricci,
where you apply Einstein’s equations. Thus find

∇aRaebc = 8π(∇bT̄ce +∇cT̄be) . (29)
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(b) Now again starting from the Bianchi identity, derive an equation for

�Rabcd = 8πG[sources built from two derivatives of T , and terms quadratic in R] . (30)

Here you will also make use of the result you got in item 3a. Note that there is a lot of room for
error in the algebra for this problem. You may want to only work at the linearized level around a
flat background, but I encourage you to work the full problem.
Solution: Apply ∇a to Eq. (27). One term forms the box operator acting on Riemann. In the
other two, commute the outer derivative inwards so as to form divergence of Riemann. This
commutation generates Riemann2 terms (which vanish on a flat background). For the divergence
terms, using the preceding result, which will now be in terms of a double-derivative of Tab. See
the Mathematica notebook for the full solution.

(c) Now specialize to a plane wave on a flat background, so that the curvature wave has the form
Rabcd = Rabcd(t− z). Use the Bianchi identities and symmetries of Riemann to show that the only
independent components are R0i0j (and others related by symmetries). [Hint: because we’re on a
flat background and linearizing, you can use a Fourier expansion and work mode by mode, using
as an ansatz Rabcd = Cabcd exp(ikexe) with a null wave-vector ke pointing in the z direction, and
some constant polarization tensor C].
Solution: Every covariant derivative on Rabcd will give a factor of ik, so the Bianchi identity
becomes

kaRbcde + kbRcade + kcRabde = 0 . (31)

In flat space and rectangular coordinates, the k vector will be ka=̇(ω, 0, 0, ω). Examining the a = 0
component of Eq. (31), we can solve

Rbcde = 1
ω

(kbRc0de + kcR0bde) = 1
ω

(−kbR0cde + kcR0bde) . (32)

We can further expand the RHS by inserting this same identity. Suppose we tried to apply this to
R0cde. Then we would get R0cde = 1

ω [−(−ω)R0cde + kc0] = R0cde, no new information. Therefore
first apply the exchange symmetry, R0cde = Rde0c, and similarly for the second term in Eq. (32).
Doing so we get

Rbcde = 1
ω2 (kbkdR0e0c − kbkeR0d0c − kckdR0e0b + kckeR0d0b) . (33)

Since Riemann is antisymmetric on adjacent pairs, something of the form R0c0d must have c and
d spatial. So, every component of Riemann is in terms of R0i0j .

(d) Show that in the above curvature wave propagating in the z direction, the only nonvanishing
components are R0x0x = −R0y0y, and R0x0y.
Solution: Evaluate Eq. (33) with bcde = 0zde, and you find

R0zde = −1
ω

(kdR0e0z − keR0d0z) . (34)

The RHS will vanish if either d = 0 or e = 0, therefore R0z0i = 0. Next suppose d, e = i, j are two
different spatial directions, then you see that the RHS still vanishes. Thus all possibilities with
R0zde = 0.
The only remaining components to study are R0x0x, R0y0y, R0x0y, and R0y0x. Next look at 00
component of the Ricci tensor, which vanishes because we are in a vacuum spacetime,

0 = R00 = ηabR0a0b = R0x0x +R0y0y +R0z0z . (35)

Since R0z0z = 0, we find that R0x0x = −R0y0y. From the exchange symmetry of Riemann,
R0x0y = R0y0x.
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4. Contracting the Bianchi identities leads to the fact that the Einstein tensor is divergence-free, ∇aGab = 0.
Use this to show thatG0

µ must have fewer time derivatives thanGiµ. Thus conclude that the components
G0

0 and G0
i will be “constraint equations,” while Gij will be evolution equations that contain two time

derivatives.
Solution: Expanding out the contracted Bianchi identity gives

∂0G
0
µ = −∂iGiµ + (ΓG terms with appropriate indices). (36)

Now this is an identity which is satisfied for all metrics, not ones satisfying certain differential equations
(like the Einstein field equations). In order to be an identity, whatever derivatives are acting on the
metric must be the same on both sides of the equation. Otherwise this would be a differential equation
for the metric instead of an identity.
Now, focus on the highest derivative terms on both sides, which must cancel each other. We know that
the Einstein tensor involves a first derivative of the Christoffel symbols, which themselves contain first
derivatives of the metric, so G ∼ ∂2g.
The highest possible time derivative on the right is if Giµ contains two time derivatives, then the right
hand side will include ∂i∂2

0g. This must be exactly balanced by the highest time derivative on the LHS.
Since the LHS already contains ∂0G

0
µ, we can have at most G0

µ ⊃ ∂i∂0g.
The components G0

0 and G0
i are constraint equations if the variables for our system are g and K ∼ ∂0g.

Then we would be able to rewrite G0
0 and G0

i in terms of spatial derivatives acting on g and K, and
no time derivatives of either.
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