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Problem Set 4

Due: Friday, Mar. 06, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work.

1. Gravitation of spin in the weak-field limit. Recall that in Lorenz gauge, expanded about flat
space, and for a static source, the linearized Einstein field equations turn into

�h̄µν = −16πGTµν =⇒ ∇2h̄µν = −16πGTµν , (1)

with a Euclidean spatial Laplace operator∇2. We modeled a static weak-field source with T00 = ρ and all
other components being small enough that they don’t matter. This recovered ∇2Φ = 4πGρ where Φ was
the Newtonian potential which appeared in the metric as h̄00 = −4Φ, giving hµν = −2Φdiag(1, 1, 1, 1).
Now we want to consider a slow rotation of the source, and see how this enters the weak-field metric.

(a) Let the source be spherically symmetric with radius R, and of uniform density ρ. Suppose it is
rotating rigidly about the x3 = z axis with constant angular velocity Ω. Work out the components
of the stress-energy tensor Tµν to first order in Ω (do this in a center-of-momentum frame, with
Cartesian coordinates centered on the center of mass).
If you wanted to go to order Ω2, which components of Tµν would change? No need to compute the
correction, just indicate which terms would be corrected.

(b) Now use the linearized Einstein equations to find the components h0x, h0y, h0z (trace reversal does
not touch the off-diagonal components, since the background metric ηµν is diagonal).
Hints:

• Make use of the Green’s function for the Laplace operator. That is, if ∇2Q = −4πS for some
field Q and source term S, then the formal solution for Q is

Q(x) =
∫

S(x′)
|x− x′|

d3x′ . (2)

• The start of the expansion for 1/|x− x′|, in tensor notation, is

1
|x− x′|

= 1
r

+ xjxj′

r3 + · · · (3)

(the summation is implied, we’re allowed to be careless when the spatial meteric is δij).
• Though you have to first set up the integrals in rectangular coordinates, it is easier to perform

the integrals by transforming the xj′ coordinates into spherical coordinates (r′, θ′, φ′).
(c) Let’s now use the Newtonian relationship between the spin angular momentum S, the moment

of inertia I, and the angular velocity, Sk = IΩk (since the body is spherical, we only have the
isotropic moment of inertia I instead of the whole tensor). Rewrite your result for h0i in terms of
Sk. [Note: Look at MTW Sec. 19.1 to see how to generalize this away from spherical symmetry
and uniform density].

(d) Transform your rectangular-coordinate result for h0i into a spherical coordinate system, giving
h0r, h0θ, h0φ [hint: you should find that only one of these components is non-zero, and it should
be proportional to Sz sin2 θ/r].
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2. Let’s take a weak-field metric that has a potential and a “vector” part,

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2)− 2βidxidt . (4)

(a) Let’s rewrite the geodesic equation for a particle with a slow velocity in 3-dimensional language.
Working to first order in v, show that the geodesic equation gives

m
d2x

dt2
= mg +mv ×H , (5)

where x is the 3-position, g = −∇Φ, and H = ∇× β. Here all bold symbols are 3-dimensional.
(b) For stationary sources (i.e. the stress-energy tensor does not change with time), show that the

Einstein equations are

∇ · g = −4πGρ (6)
∇×H = −16πGJ (7)
∇ ·H = 0 (8)
∇× g = 0 . (9)

Here J ≡ ρv is the mass current of the fluid source. This is another place where you might want
to use computer algebra to help.

3. Show that the Lorenz gauge condition ∇µh̄µν is equivalent to the “harmonic” coordinate gauge
condition, �x(µ) = 0. Remember that the µ on x(µ) is not a vector index, but rather a label to count
the coordinates.
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