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Problem Set 4 — SOLUTIONS

Due: Friday, Mar. 06, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work.

1. Gravitation of spin in the weak-field limit. Recall that in Lorenz gauge, expanded about flat
space, and for a static source, the linearized Einstein field equations turn into

�h̄µν = −16πGTµν =⇒ ∇2h̄µν = −16πGTµν , (1)

with a Euclidean spatial Laplace operator∇2. We modeled a static weak-field source with T00 = ρ and all
other components being small enough that they don’t matter. This recovered ∇2Φ = 4πGρ where Φ was
the Newtonian potential which appeared in the metric as h̄00 = −4Φ, giving hµν = −2Φdiag(1, 1, 1, 1).
Now we want to consider a slow rotation of the source, and see how this enters the weak-field metric.

(a) Let the source be spherically symmetric with radius R, and of uniform density ρ. Suppose it is
rotating rigidly about the x3 = z axis with constant angular velocity Ω. Work out the components
of the stress-energy tensor Tµν to first order in Ω (do this in a center-of-momentum frame, with
Cartesian coordinates centered on the center of mass).
If you wanted to go to order Ω2, which components of Tµν would change? No need to compute the
correction, just indicate which terms would be corrected.
Solution: In flat space, the velocity field for a body rigidly rotating about the Ωi vector is
vi = εijkΩjxk, and we would have vi = vi. So, for rotation about the z axis, we would have
vx = yΩ, vy = −xΩ, and vz = 0. For non-relativistic velocities we would have v0 = 1. In the
perfect fluid stress-energy tensor, we get

T00 = ρ+O(Ω2) , (2)
T0i = ρvi +O(Ω3) = ρvi +O(Ω3) , (3)
Tij = O(Ω2) . (4)

The expansion in small Ω is also a slow-velocity expansion. The velocity gets a relativistic correction
that is at the relative x2Ω2/c2 order, hence the correction terms above.

(b) Now use the linearized Einstein equations to find the components h0x, h0y, h0z (trace reversal does
not touch the off-diagonal components, since the background metric ηµν is diagonal).
Hints:

• Make use of the Green’s function for the Laplace operator. That is, if ∇2Q = −4πS for some
field Q and source term S, then the formal solution for Q is

Q(x) =
∫

S(x′)
|x− x′|

d3x′ . (5)

• The start of the expansion for 1/|x− x′|, in tensor notation, is

1
|x− x′|

= 1
r

+ xjxj′

r3 + · · · (6)

(the summation is implied, we’re allowed to be careless when the spatial meteric is δij).

Page 1 of 4



• Though you have to first set up the integrals in rectangular coordinates, it is easier to perform
the integrals by transforming the xj′ coordinates into spherical coordinates (r′, θ′, φ′).

Solution: Using the expansion and the tips, let’s compute:

h0i(x) = h̄0i(x) = 4G
∫

T0i(x′)
|x− x′|

d3x′ = 4Gρ
r

[∫
vi(x′)d3x′ + xl

r2

∫
x′lvi(x′)d3x′ + . . .

]
. (7)

Now if we replace vi(x′) = εijkΩjx′k we see that the first term vanishes, since it is odd in x′.
Continuing, we need to evaluate

h0i(x) = 4Gρ
r3 εijkΩjxl

∫
x′lx′kd3x′ = 4Gρ

r3 εijkΩjxl
∫
n̂′ln̂′kr′4dr′d2Ω′ , (8)

where we have used r′i = r′n̂′i and d2Ω is the area element on the unit 2-sphere. Now we can do
the radial integral right away, as the source only extends from r′ = 0 to r′ = R. Finally we will
need the identity ∫

n̂in̂jd2Ω = 4π
3 δij , (9)

which can be shown explicitly by integrating in spherical coordinates. Assembling we find

h0i(x) = 16πGρR5

15r3 εijkΩjxk , (10)

or h0x = 16πGρR5Ωy/15r3, h0y = −16πGρR5Ωx/15r3, and h0z = 0.
(c) Let’s now use the Newtonian relationship between the spin angular momentum S, the moment

of inertia I, and the angular velocity, Sk = IΩk (since the body is spherical, we only have the
isotropic moment of inertia I instead of the whole tensor). Rewrite your result for h0i in terms of
Sk. [Note: Look at MTW Sec. 19.1 to see how to generalize this away from spherical symmetry
and uniform density].
Solution: For a sphere of uniform density, the total mass is M = 4π

3 R
3ρ and the moment of

inertia is I = 2
5MR2 = 8π

15R
5ρ. Substituting in we get

h0i(x) = 2G
r3 ε

ijkSjxk . (11)

(d) Transform your rectangular-coordinate result for h0i into a spherical coordinate system, giving
h0r, h0θ, h0φ [hint: you should find that only one of these components is non-zero, and it should
be proportional to Sz sin2 θ/r].
Solution: We want to go to the barred spherical coordinates xī = {r, θ, φ} in terms of the
unprimed Cartesian coordinates xi = {x, y, z}, using the standard transformation. Thus we will
have to compute the Jacobian matrix in

h0j̄ = ∂xi

∂xj̄
h0i . (12)

Since this is a second rank tensor, there are actually two Jacobian factors, but this coordinate
transformation is diagonal and purely spatial – thus h0i ends up transforming like a spatial covector.
Computing the Jacobian we geth0r

h0θ
h0φ

 =

 sin θ cosφ sin θ sinφ cos θ
r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0

h0x
h0y
h0z

 . (13)

Inserting the Cartesian components, we get h0r = h0θ = 0, and h0φ = −2GSz sin2 θ/r.
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2. Let’s take a weak-field stationary metric that has a potential and a “vector” part,

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)(dx2 + dy2 + dz2) + 2βidxidt . (14)

(a) Let’s rewrite the geodesic equation for a particle with a slow velocity in 3-dimensional language.
Working to first order in v, show that the geodesic equation gives

m
d2x

dt2
= mg +mv ×H , (15)

where x is the 3-position, g = −∇Φ, and H = ∇× β. Here all bold symbols are 3-dimensional.
Solution: The full geodesic equation is

d2xµ

dτ2 + Γµνρ
dxν

dτ

dxρ

dτ
= 0 . (16)

Not only do we need to expand the metric in a small parameter ε1, where Φ and β are both O(ε1),
but we will also expand the particle’s velocity in another small parameter ε2, where vi = O(ε2),
and v0 = 1 +O(ε22). Then for the spatial components of the geodesic equation, we will need Γi00
and Γi0j , but not Γijk.
Now working to first order in ε1, we get

Γi00 = 1
2g

iµ (2∂0g0µ − ∂µg00) = −1
2δ

ij∂jh00 = +∂iΦ , (17)

Γi0j = 1
2g

iµ (∂0gjµ + ∂jg0µ − ∂µg0j) = 1
2δ

ik(∂jh0k − ∂kh0j) = 1
2(∂jβi − ∂iβj) . (18)

Now plugging this back into the geodesic equation, to first order in both ε1 and ε2, and using that
dτ = dt(1 +O(ε22)),

d2xi

dt2
= −Γi00v

0v0 − 2Γi0jv0vj = −∂iΦ + vj(∂iβj − ∂jβi) . (19)

This last expression can be rewritten in traditional grad and curl notation, using that (∇× β)k =
εklm∂lβm, (v ×H)i = εijkvjHk, and using the epsilon identity εijkεklm = δilδjm − δimδjl.

(b) For stationary sources (i.e. the stress-energy tensor does not change with time), show that the
Einstein equations are

∇ · g = −4πGρ (20)
∇×H = −16πGJ (21)
∇ ·H = 0 (22)
∇× g = 0 . (23)

Here J ≡ ρv is the mass current of the fluid source. This is another place where you might want
to use computer algebra to help.
Solution: The latter two equations are identities from the definitions of g as a gradient, and H
as a curl.
The linearized Einstein tensor on a flat background is gauge-invariant – we can use the general
expression (from e.g. Flanagan and Hughes (2005), or from Chapter 7 of Carroll) and apply it to
whatever gauge we have here. In the notation of Carroll, we have Ψ = Φ, wj = βj , and sij = 0.
Then the two relevant components of the Einstein tensor are

G00 = 2∇2Ψ + ∂k∂ls
kl (24)

G0j = −1
2∇

2wj + 1
2∂j∂kw

k + 2∂0∂jΨ + ∂0∂ksj
k . (25)
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Putting this into the EFE in our notation, for a stationary metric, gives

8πGρ = −2∇ · g , (26)

8πGJi = −1
2∇

2βj + 1
2∂j∂kβ

k . (27)

Finally use the identity ∇ × (∇ × β) = −∇2β +∇(∇ · β), which can also be proved with the
identity for the contraction of two epsilon tensors.

3. Show that the Lorenz gauge condition ∇µh̄µν = 0 is equivalent to the “harmonic” coordinate gauge
condition, �x(µ) = 0. Remember that the µ on x(µ) is not a vector index, but rather a label to count
the coordinates.
Solution: Starting from the harmonic gauge condition, compute:

0 = gρσ∇ρ∇σx(µ) = gρσ∇ρ∂σx(µ) = gρσ∇ρδ(µ)
σ (28)

= gρσ
(
∂ρδ

(µ)
σ − Γνρσδ(µ)

ν

)
(29)

= −gρσΓµρσ . (30)

Here only the lower index on δ
(µ)
σ is a tensor index that needed to be corrected. Now suppose we

perturb the metric, gµν → gµν + εhµν +O(ε2), and similarly perturb the gauge condition. Then the
perturbation of the condition is:

0 = δ(gρσΓµρσ) = δ(gρσ)Γµρσ + gρσδΓµρσ . (31)

Now recall that δ(gρσ) = −hρσ, and

δΓµρσ = 1
2g

µν (∇ρhσν +∇σhρν −∇νhρσ) . (32)

Contracting we get

gρσδΓµρσ = gµν
(
∇ρhρν −

1
2∇νh

)
= ∇ρh̄ρµ . (33)

Now, unfortunately, the problem statement was a little vague. The above identity along with Eq. (31)
only give the Lorenz gauge condition if we satisfy hρσΓµρσ = 0, for example if the background is flat
with rectangular coordinates.
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