UNIVERSITY OF MISSISSIPPI

Department of Physics and Astronomy GR II (Phys. 750) — Prof. Leo C. Stein — Spring 2020

Problem Set 1

Due: Tuesday, Feb. 4, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in must be your own work.

- 1. Construct explicit examples (giving coordinate maps) of the following types of maps between manifolds:
 - (a) injective but not bijective
 - (b) surjective but not bijective
 - (c) neither surjective nor injective; and
 - (d) bijective (but not the identity map, that's too easy!)

For each of these cases, pick for the domain and codomain any well-known manifold such as the real line \mathbb{R} or space \mathbb{R}^n , an interval [0, 1], an n-sphere S^n , Cartesian products of these, etc. (If you are using a non-standard coordinate system then explain the coordinates.)

- 2. Take the map (say it was called $F: M \to N$) you defined in item 1a and compute the differential dF in the coordinates you used above. Use this differential to compute the pullback of any one-form from N back to M.
- 3. Let $\gamma : \mathbb{R} \to \mathbb{R}^2$ be a logarithmic spiral, so that in rectangular coordinates we have $\gamma(t) = (e^t \cos t, e^t \sin t)$.
 - (a) What is the pullback $\gamma^* r$ of the function $r = \sqrt{x^2 + y^2}$?
 - (b) Find the matrix representing the differential $d\gamma$ in these coordinates.
 - (c) Use $d\gamma$ to find the tangent vector to the curve.
 - (d) Use $d\gamma$ to pull back the one-form dr.
 - (e) Use $d\gamma$ to pull back the two-form $dx \wedge dy$.