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Electromagnetism II (Phys. 402) — Prof. Leo C. Stein — Spring 2020

Problem Set 10 — SOLUTIONS

Due: Friday, May 8, 2020, by 5PM

Material: The final covers all the material so far.

Due date: Friday, May 8, 2020 by 5PM to 205 Lewis Hall. If my door is closed, please slide the exam
under my door. Late exams will require extenuating circumstances.

Logistics: The exam consists of this page plus 2 pages of questions. Do not look at the problems until
you are ready to start it.

Time: The work might expand to eat up as much time as you allot – therefore I highly recommend you
restrict yourself to no more than 5 hours cumulative time spent on these problems. You may take as many
breaks as you like, not counted against the 5 hours. You should not be consulting references, working
on the problems, or discussing with others during the breaks.

Resources: The final is not collaborative. All questions must be done on your own, without consulting
anyone else. You may consult your own notes (both in-class and notes on this class you or a colleague in
the class have made), the textbook by Griffiths, and solution sets on the course website. You may not
consult any other material, including other textbooks, the web (except for the current Phys. 402 website),
material from previous years’ Phys. 402 or any other classes, or copies you have made of such material, or
any other resources. Calculators and symbolic manipulation programs are not allowed.
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1. Gradually changing waveguide. Suppose we have a hollow waveguide running in the z direction
for several kilometers. At every z the cross-section is a rectangle with sides a, b where a ≥ b. Suppose
we send in a wave that excites the TEmn mode with some frequency ω and wavenumber k that satisfy
the dispersion relation [Griffiths Eq. (9.187)]

k =
√

(ω/c)2 − π2[(m/a)2 + (n/b)2] = 1
c

√
ω2 − ω2

mn , (1)

and the amplitude is given by some B0 in [Griffiths Eq. (9.186)]

Bz = B0 cos(mπx
a

) cos(nπy
b

) . (2)

(a) What is the average energy flux 〈S〉 (averaged over one period of the wave)? What is the averaged
energy flux through the whole cross-section,

∫
〈S〉 · da? (The result of Griffiths’ problem 9.11

[time-averaging a product using complex exponentials] might be helpful).
Solution: We want to find 〈S〉 = 1

2µ0
Ẽ × B̃∗. The complex fields are Ẽ = Ẽ0e

i(kz−ωt) and
B̃∗ = B̃∗0e

−i(kz−ωt). For the TEmn mode, Ez = 0, and the entire solution is determined in terms
of Bz. We find Ex,y and Bx,y from various derivatives of Bz [Eq. (9.180)], finding

B∗x = −ik
(ω/c)2 − k2 (−mπ

a
)B0 sin(mπx

a
) cos(nπy

b
) (3)

B∗y = −ik
(ω/c)2 − k2 (−nπ

b
)B0 cos(mπx

a
) sin(nπy

b
) (4)

Ex = −iω
(ω/c)2 − k2 (−nπ

b
)B0 cos(mπx

a
) sin(nπy

b
) (5)

Ey = −iω
(ω/c)2 − k2 (−mπ

a
)B0 sin(mπx

a
) cos(nπy

b
) . (6)

Now computing the cross product and averaging, we get

〈S〉 = 1
2µ0

B2
0

(ω/c)2 − k2

{
iπωm

a
sin(mπx

a
) cos(mπx

a
) cos2(nπy

b
)x̂ (7)

+ iπωn

b
cos2(mπx

a
) sin(nπy

b
) cos(nπy

b
)ŷ

+ ωkπ2

(ω/c)2 − k2

[
(n
b

)2 cos2(mπx
a

) sin2(nπy
b

) + (m
a

)2 sin2(mπx
a

) cos2(nπy
b

)
]
ẑ

}
.

Finally we integrate over x from 0 to a, and over y from 0 to b, to find∫
〈S〉 · da = 1

8µ0

ωkπ2B2
0

[(ω/c)2 − k2]2 ab
[
(m
a

)2 + (n
b

)2
]

= ωkabc2

8µ0ω2
mn

B2
0 . (8)

Now suppose that this waveguide’s cross-section changes very slowly in z, so that a = a(z) and b = b(z).
Very slowly here means that 1

a
da
dz � k and similarly for b. For simplicity we will assume that the aspect

ratio a/b remains constant.

(b) Will ω change with z? What about k?
Solution: The frequency ω will not change, but k will.

(c) Now the amplitude B0(z) will have to slowly vary with z. Find a differential equation that would
allow you to solve for B0(z) if somebody gave you a(z) (and thus they are also giving you b(z)
since their ratio is constant).
Solution: The energy flux through each z must be the same for energy to be conserved. Therefore
we must have

d

dz

∫
〈S〉 · da = 0 . (9)
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Therefore we have

0 = d

dz

[
ωkabc2

8µ0ω2
mn

B2
0

]
. (10)

Inside the brackets, a, b, k, ωmn, and B0 are all functions of z.
(d) Find a simple combination of a,B0, and k that is constant along z.

Solution: Start from Eq. (10). Then replace b with b = εa where ε = b/a is a constant. We can
ignore several constants that can be taken out of the derivative and divided out. Now we have

0 = d

dz

[
ka2

(m/a)2 + (n/εa)2B
2
0

]
(11)

0 = d

dz

[
ka4

m2 + (n/ε)2B
2
0

]
. (12)

The denominator is a constant, so we have found ka4B2
0 is a constant along z.

(e) What will happen if a gradually shrinks too small?
Solution: If a becomes too small, ωmn will grow to be larger than ω, and the mode will not be
able to propagate any more. It will reflect back down the waveguide in the opposite direction.
Notice that as ωmn approaches ω, k → 0, so it is impossible to shrink a to this point adiabatically
(satisfying 1

a
da
dz � k).

2. Integral identities. For the following problems, you can assume that as you go to very large distances,
the electric field decays as 1/r2, and the magnetic field decays as 1/r3.

(a) How quickly can the vector potential A decay at large r?
Solution: It can decay as 1/r2; one derivative of A gives B.

(b) Prove the following integral identity, for any two vector fields V ,W integrated over volume V:∫
V
W · (∇× V ) d3r =

∫
∂V

(V ×W ) · da+
∫
V
V · (∇×W ) d3r . (13)

Solution: This comes simply from rearranging the product rule

∇ · (V ×W ) = W · (∇× V )− V · (∇×W ) , (14)

then integrating over V, and applying the divergence theorem on the appropriate term.
(c) Now combine everything to show that the following integral over all space and time vanishes:∫ +∞

−∞

∫
All space

(E ·B) d3r dt = 0 . (15)

[Hint: use the potential formulation, and assume that the fields also vanish as t→ ±∞.]
Solution: We have E = −∇V − ∂

∂tA and B = ∇×A. Our integral is now∫ +∞

−∞

∫
All space

[−∇V · (∇×A)− ∂A

∂t
· (∇×A)] d3r dt . (16)

In the first term, integrated by parts to move the gradient from V onto B. The new integrand
vanished because B is divergence-free. The boundary term vanishes because the fields decay
sufficiently rapidly.
Now we have to handle ∫ +∞

−∞

∫
All space

[−∂A
∂t
· (∇×A)] d3r dt . (17)
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Using the identity in Eq. (13), we can rewrite this as∫ +∞

−∞

∫
All space

[−∂A
∂t
· (∇×A)] d3r dt =∫ +∞

−∞

∫
Boundary

[−∂A
∂t
×A] · da dt+

∫ +∞

−∞

∫
All space

[−A · (∇× ∂A

∂t
)] d3r dt

In the second integral on the RHS, the time derivative commutes with the curl. Then integrate by
parts the time derivative to put it on the first factor. Now this term is the same as the one on the
LHS, except for a sign; they combine. Now we have∫ +∞

−∞

∫
All space

[∂A
∂t
· (∇×A)] d3r dt = 1

2

∫ +∞

−∞

∫
Boundary

[∂A
∂t
×A] · da dt (18)

and we want to show that this vanishes. But the term on the right hand side is integrated over an
arbitrarily large 2-sphere with radius R. Each factor of A inside decays as 1/R2, and the area
grows as R2, so the entire integral decays as 1/R2 overall. Thus it vanishes as R→∞.

3. Radiation reaction from a rotor with two charges. One problem set 8, we considered a rotor of
length 2b laying in the x− y plane, with a charge +q at one end and −q at the other end, spinning
about the z axis at angular frequency ω. In that problem, we found the dipole radiation carried an
energy flux (integrated over all angles):

〈dE
dt
〉 = 2µ0q

2b2ω4

3πc . (19)

Let us now give each of these charges a mass m, and let the rotor not contribute to the moment of
inertia.

(a) Since energy is leaving, the spin rate ω(t) will slowly decrease. Find a differential equation for
dω/dt and solve for ω(t).
Solution: Energy conservation. All the energy is in rotational kinetic energy, E = 1

2Iω
2, with

I = 2mb2. Combining we get

1
2(2mb2)2ωdω

dt
= −2µ0q

2b2ω4

3πc . (20)

Solving,

dω

dt
= −µ0q

2ω3

3πmc ≡ −αω
3 , (21)

where α ≡ µ0q
2/3πmc. This can be separated to integrate,

1
2ω2 = αt+ 1

2ω0
(22)

where ω0 is the value of the spin at time 0. The solution is

ω(t) = ω0√
1 + 2αtω2

0
. (23)

(b) Now compute the radiation-reaction force on each particle. Use this to compute the torque on the
system and so find another expression for dω/dt. Do they give the same result? Why or why not?
Solution: The Abraham-Dirac-Lorentz formula is

FRR = µ0q
2

6πc ȧ . (24)
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We have a pointing radially inward with magnitude ω2b, so ȧ points in the opposite direction of
velocity, with magnitude ω3b. Each charged particle contributes to the torque the same amount,
giving

τRR = −2µ0q
2

6πc ω
3b2 . (25)

Torque is the time derivative of angular momentum, so we have

−µ0q
2

3πc ω
3b2 = d

dt
Iω = (2mb2)dω

dt
, (26)

=⇒ dω

dt
= − µ0q

2

6πmcω
3 . (27)

Notice that this is off by a factor of 2 from the result we got in part (a). The calculation in this
part is only from the radiation-reaction force, and did not include the Lorentz force on particle 1
due to the field of particle 2, and vice versa. That additional force accounts for the factor of 2.
See the related discussion at the end of Griffiths’ section 11.2.3.

4. Two rotating antennas. You might have seen a rotating antenna at an airport. Let’s try to make
two simple models. Suppose we take the simple split dipole antenna, at left, and the loop (“magnetic
dipole”) antenna, at right:

Each half of the split dipole has length b, and it is lying along direction n̂ somewhere in the x− y plane.
Meanwhile the loop antenna has radius b, and its normal vector n̂ lies somewhere in the x− y plane.
In each scenario, the antenna is hooked up to a source of alternating current I(t) = I0 cos(Ωst), denoted
with red arrows for one part of the oscillation. Each antenna is also hooked up to a motor that makes
it rotate around the ẑ axis with a different angular frequency ωr, denoted with the black arrows.
We’re interested in describing the radiation at some point r at a large distance away from an antenna.

(a) In order to control the multipole expansion, we need to satisfy certain relationships between things
like b, r, ωr, and Ωs. Explain which quantities must be very small or large, and why.
Solution: Based on the setup of the rotating antennas, we should naively expect radiation to
come out at some combination of the frequencies ωr and Ωs. A closer examination would yield
that the radiation will be at the two frequencies |ωr ± Ωs|, but that level of detail is not need for
this part. So, we need the following approximations:
i. b� r. The multipole expansion uses the dimensionless ratio b/r as an expansion parameter,

so we need b/r � 1 to expand. In words, the field point r must be (far) outside of the source
region.

ii. b� c/ωr. The source region must be small compared to the wavelength of radiation associated
to frequency ωr. Or, in other words, the rotation of the antenna geometry must happen on
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timescales much longer than Tl.c. ≡ b/c, the light-crossing time of the region, so we can always
think of there being a well-defined “instantaneous” source geometry. This inequality also keeps
the tips of the antennas moving much slower than the speed of light.

iii. b � c/Ωs. Just like above, the charges and currents must change slowly compared to Tl.c.,
the light-crossing time of the region.

iv. r � c/ωr and r � c/Ωs. The field point must be in the “wave zone” or “radiation zone,”
which is at least a few wavelengths of radiation away from the source. There can be radiation
at either frequency ωr or Ωs (in more detail we see the true frequencies are |ωr ± Ωs|).

For the remainder of the problem, you can assume that ωr � Ωs, if you didn’t already assume that
above.

(b) For the split dipole, what is the electric dipole p(t) as a function of time? For the loop antenna,
what is the magnetic dipole m(t) as a function of time?
Solution: Given the current I(t) = I0 cos(Ωst), the charge that accumulates on one half of
the split dipole is q(t) = I0

Ωs
sin(Ωst). We can consider this charge located at location ξ+(t) =

Re[beiωrt(x̂− iŷ)], like in problem set 8 (there the rotation was clockwise, here it is anticlockwise
as seen from above). Having the opposite charge at location ξ− = −ξ+ gives us the electric dipole
moment

p(t) = 2bq(t)Re[eiωrt(x̂− iŷ)] (28)

p(t) = 2bI0
Ωs

sin(Ωst)Re[eiωrt(x̂− iŷ)] . (29)

Here you can see the product of a sinusoid at frequency Ωs and another at frequency ωr, hence
generating the two frequencies |ωr ± Ωs| from trig identities.
For the loop antenna, recall that for a planar circuit, the magnetic dipole moment is m = Ia
where a points in the direction normal to the loop with magnitude equal to the area of the loop.
Our current is oscillating and the normal is rotating, each at a different frequency. We have

m(t) = I(t)πb2Re[eiωrt(x̂− iŷ)] (30)
m(t) = I0 cos(Ωst)πb2Re[eiωrt(x̂− iŷ)] . (31)

(c) For each of the two models (split dipole, loop antenna) give the electric and magnetic fields E,B
at the very distant point r. We only need the O(1/r) part, and you can use all the approximations
above. [Hint: It will probably be simplest to first work out a coordinate-independent result, and
then use it to find x̂, ŷ, ẑ components of the fields.]
Solution: For the electric dipole, we have the general coordinate-independent result (developed
in Griffiths)

E(r, t) ' µ0

4πr [r̂ × (r̂ × p̈)]
∣∣
t=tret

(32)

B(r, t) ' − µ0

4πrc [r̂ × p̈]
∣∣
t=tret

. (33)

Here p̈ needs to be evaluated at the retarded time, t0 = t − r/c. So, let’s compute this second
time derivative, keeping in mind that we are assuming ωr � Ωs. Even though the time derivatives
will act with the product rule, the Ωs terms will be dominant over the ωr terms, so we have

p̈(t) ' −2bI0Ωs sin(Ωst)Re[eiωrt(x̂− iŷ)] (34)
p̈(t) ' −2bI0Ωs sin(Ωst)Re[eiωrt−iφ(r̂ sin θ + θ̂ cos θ − iφ̂)] (35)
p̈(t) ' −2bI0Ωs sin(Ωst)[cos(ωrt)x̂+ sin(ωrt)ŷ] . (36)

Page 6 of 9



Now we need to take cross products, which can either be done using the x̂, ŷ, ẑ basis, or the r̂, θ̂, φ̂
basis. The latter turns out to be simpler, using r̂ × θ̂ = φ̂ and r̂ × φ̂ = −θ̂,

[r̂ × p̈] = −2bI0Ωs sin(Ωst)Re[eiωrt−iφ(φ̂ cos θ + iθ̂)] , (37)
r̂ × [r̂ × p̈] = −2bI0Ωs sin(Ωst)Re[eiωrt−iφ(−θ̂ cos θ + iφ̂)] . (38)

These expressions are then inserted into Eq. (32) and (33), keeping in mind that we need to
evaluate p̈ at time t0 = t− r/c. Doing so we get

E(r, t) ' −2µ0bI0Ωs sin(Ωst0)
4πr Re[eiωrt0−iφ(−θ̂ cos θ + iφ̂)] , (39)

' 2µ0bI0Ωs sin(Ωst0)
4πr [cos(ωrt0 − φ) cos θθ̂ + sin(ωrt0 − φ)φ̂)] , (40)

B(r, t) ' 2µ0bI0Ωs sin(Ωst0)
4πrc Re[eiωrt0−iφ(φ̂ cos θ + iθ̂)] , (41)

' 2µ0bI0Ωs sin(Ωst0)
4πrc [cos(ωrt0 − φ) cos θφ̂− sin(ωrt0 − φ)θ̂)] . (42)

Now we turn to the loop antenna. This is truly novel, since Griffiths did not develop the multipole
expansion for an arbitrary source with no electric dipole radiation. So, let us go back to the
Green’s functions solutions for V and A in Lorenz gauge. Since ρ = 0 for the loop antenna (no
charge accumulation anywhere), V = 0. For A in index notation we have

Ai = µ0

4π

∫
J i(tr, r′)

r d3r′ . (43)

This is where we apply the multipole expansion, using the general result (proven on problem set 8)∫
S(tr, r′)

r d3r′ = 1
r

∞∑
n=0

1
n!

(
1
c

∂

∂t

)n ∫
S(t0, r′)(r̂ · r′)n d3r′ +O(r−2) . (44)

Let’s examine the first two terms in Ai,

Ai = µ0

4πr

[∫
J i(t0, r′)d3r′ + ∂

∂ct

∫
J i(t0, r′)(r̂ · r′)d3r′ + . . .

]
. (45)

As discussed in class (and also an exercise in Griffiths), the first integral is ṗ(t0), from a conservation
law. This vanishes for the loop antenna because there is no electric dipole moment.
For the second integral, with the current restricted to a curve, so that we replace Jd3r′ → Idl′,
we need to compute ∮

(r̂ · r′)dl′ . (46)

This is actually an exercise in Griffiths, and shown in his Eq. (5.82) [in the 3rd Edition]∮
(r̂ · r′)dl′ = −r̂ ×

∫
da′ . (47)

So, we can write this term in A using m,

A ' − µ0

4πrc r̂ × ṁ
∣∣
t=tret

. (48)

Now computing E = −∇V − ∂A/∂t and B = ∇×A, we get

E ' µ0

4πrc r̂ × m̈
∣∣
t=tret

, (49)

B ' µ0

4πrc2 r̂ × [r̂ × m̈]
∣∣
t=tret

. (50)
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You can check that the magnetic dipole radiation example worked out in the book is a special case
of this general formula.
Now we plug in the magnetic dipole moment from before. These steps are very similar to the
electric dipole part, again computing derivatives where Ωs dominates over ωr. We get

m̈(t) = −I0Ω2
s cos(Ωst)πb2Re[eiωrt(x̂− iŷ)] , (51)

m̈(t) = −I0Ω2
s cos(Ωst)πb2Re[eiωrt−iφ(r̂ sin θ + θ̂ cos θ − iφ̂)] , (52)

[r̂ × m̈] = −I0Ω2
s cos(Ωst)πb2Re[eiωrt−iφ(φ̂ cos θ + iθ̂)] , (53)

r̂ × [r̂ × m̈] = −I0Ω2
s cos(Ωst)πb2Re[eiωrt−iφ(−θ̂ cos θ + iφ̂)] . (54)

Finally, plugging into E and B, making sure to evaluate at t0 = t− r/c, find

E ' −µ0I0Ω2
s cos(Ωst0)b2

4rc Re[eiωrt0−iφ(φ̂ cos θ + iθ̂)] , (55)

' −µ0I0Ω2
s cos(Ωst0)b2

4rc [cos(ωrt0 − φ) cos θφ̂− sin(ωrt0 − φ)θ̂] , (56)

B ' −µ0I0Ω2
s cos(Ωst0)b2

4rc2 Re[eiωrt0−iφ(−θ̂ cos θ + iφ̂)] , (57)

' µ0I0Ω2
s cos(Ωst0)b2

4rc2 [cos(ωrt0 − φ) cos θθ̂ + sin(ωrt0 − φ)φ̂] . (58)

5. Griffiths problem 12.47 (transform a plane electromagnetic wave to a new frame).
Solution:

(a) The electric and magnetic fields are

E = E0 cos(kx− ωt)ŷ , (59)

B = E0

c
cos(kx− ωt)ẑ , (60)

where k = ω/c.
(b) We use the general transformation of E,B fields when one boosts in the x direction; but the only

non-vanishing components we have to start with are Ey and Bz. The result is

Ēx = 0 , Ēy = γ(Ey − vBz) , Ēz = 0 , (61)

B̄x = 0 , B̄y = 0 , B̄z = γ(Bz −
v

c2
Ey) . (62)

Plugging in the fields from Eq. (59) and (60),

Ēy = αE0 cos(kx− ωt) , B̄z = α
E0

c
cos(kx− ωt) , (63)

where

α ≡ γ
(

1− v

c

)
=

√
1− v/c
1 + v/c

. (64)

Now we need to go to the barred spacetime coordinates via the Lorentz transformation, x = γ(x̄+vt̄),
t = γ(t̄+ v

c2 x̄), so

kx− ωt = k̄x̄− ω̄t̄ (65)

where

k̄ ≡ γ(k − ωv

c2
) = αk , ω̄ ≡ γω(1− v/c) = αω . (66)

Page 8 of 9



So in summary, we have

Ē = Ē0 cos(k̄x̄− ω̄t̄)ŷ , (67)

B̄ = Ē0

c
cos(k̄x̄− ω̄t̄)ẑ , (68)

where the barred quantities are Ē0 = αE0, k̄ = αk, ω̄ = αω, where α =
√

1−v/c
1+v/c .

(c) The new frequency is ω̄ = αω =
√

1−v/c
1+v/cω. This is the Doppler shift. The wavelength is

λ̄ = 2π/k̄ = 2π/αk = λ/α. The phase velocity in this frame is v̄ = ω̄/k̄ = c. As required, the
speed of light is the same in all inertial frames – that was the assumption for deriving the Lorentz
transformations.

(d) Intensity is proportional to E2, so the ratio of intensities is

Ī

I
= Ē2

0
E2

0
= α2 = 1− v/c

1 + v/c
. (69)

As you approach the speed of light, the amplitude, frequency, and intensity of light all go to zero,
so it will be more and more difficult to see the light.
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