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Electromagnetism II (Phys. 402) — Prof. Leo C. Stein — Spring 2020

Problem Set 8 — SOLUTIONS

Due: Saturday, Apr. 25, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Radiation from charges in circular motion. Suppose we have a rotor of length 2b that lies in the
x − y plane, centered on the ẑ axis. We attach a charge +q to one end, and an opposite charge −q
to the opposite end, and then spin this rotor around the ẑ axis (clockwise as seen from above) at an
angular frequency of ω radians per second. At time t = 0 it lies along the x axis.

(a) Write the trajectories ξ+(t) of the positive charge and ξ−(t) of the negative charge. What is the
charge distribution ρ(t, r)? (There will be delta functions!)
Solution: A compact way to encode the circular motion of both particles is to use the real parts
of complex trajectories,

ξ+(t) = Re[beiωt(x̂+ iŷ)] (1)
ξ−(t) = −ξ+(t) . (2)

The charge distribution is given by a delta function at the location of each particle,

ρ(t, r) = +qδ(3)(r − ξ+(t))− qδ(3)(r − ξ−(t)) . (3)

(b) Compute the first three charge moments of this distribution, as a function of time: the 0th moment
(charge), the 1st moment (charge dipole), and the 2nd moment (charge quadrupole). The charge
quadrupole moment

↔
Q is a symmetric tensor defined similarly to the charge monopole Q and

dipole moment p,

Q(t) =
∫
ρ(t, r′)d3r′ (4)

pi(t) =
∫
ρ(t, r′)r′id3r′ (5)

Qij(t) =
∫
ρ(t, r′)r′ir′jd3r′ . (6)

[Note 1: The definition of quadrupole moment I wrote here differs from what Griffiths writes in
Chapter 3. The convention I’m using is more in line with what’s in the general relativity literature.
Note 2: If you find this problem confusing, you probably want to review chapter 3, and perhaps
try problem 3.45.]
Solution: The total charge is very easy, Q(t) =

∫
ρ(t, r′)d4r′ = 0. The other two are slightly

harder.

p(t) =
∫
ρ(t, r′)r′d3r′ = qξ+(t)− qξ−(t) = 2bqRe[eiωt(x̂+ iŷ)] , (7)

Qij(t) =
∫
ρ(t, r′)r′ir′jd3r′ = qξi+(t)ξj+(t)− qξi−(t)ξj−(t) . (8)
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(c) How would you define the octupole moment of a charge distribution?
Solution: Following the progression, it is natural to define the octupole moment as

Oijk(t) =
∫
ρ(t, r′)r′ir′jr′kd3r′ . (9)

(d) Find the second time derivative of the dipole moment, p̈.
Solution: We only need to take the time derivative of eiωt, so we get

p̈ = −2bqω2Re[eiωt(x̂+ iŷ)] = −ω2p . (10)

(e) Using Griffiths’ result for the dipole radiation from a general charge distribution, find the electric
and magnetic fields E,B produced by this system, at a large distance r � λ. [Note that Griffiths’
equation in terms of p̈ is correct for any orientation of coordinate system. However his later
equations in terms of θ̂ and φ̂ have aligned the z axis along the (retarded) direction of p̈, so if you
wanted to apply those, you’d need to constantly change your basis!]
Solution: Dipole radiation from an arbitrary source produces radiative E,B fields given by

E = µ0

4πr r̂ × (r̂ × p̈) , (11)

B = −µ0

4πrc r̂ × p̈ , (12)

where p is evaluated at the retarded time t0 ≡ t− r/c. Let’s compute those cross products, which
is easiest by converting p into the basis of {r̂, θ̂, φ̂} at the far-zone field point with coordinates
(r, θ, φ). Using the transformations in Griffiths we can write

p(t) = 2bqRe[eiωt(x̂+ iŷ)] = 2bqRe[eiωt+iφ{r̂ sin θ + θ̂ cos θ + iφ̂}] . (13)

Now we can find the cross products as

r̂ × p = 2bqRe[eiωt+iφ{φ̂ cos θ − iθ̂}] , (14)
r̂ × (r̂ × p) = 2bqRe[eiωt+iφ{−θ̂ cos θ − iφ̂}] . (15)

Thus we have the dipole radiation as

E = −2bqω2µ0

4πr Re[eiωt+iφ{−θ̂ cos θ − iφ̂}] (16)

E = −2bqω2µ0

4πr

[
−θ̂ cos θ cos(ωt+ φ)− φ̂ cos(ωt+ φ+ π/2)

]
, (17)

B = +2bqω2µ0

4πrc Re[eiωt+iφ{φ̂ cos θ − iθ̂}] (18)

B = +2bqω2µ0

4πrc

[
+φ̂ cos θ cos(ωt+ φ)− θ̂ cos(ωt+ φ+ π/2)

]
. (19)

(f) What is the polarization of the electromagnetic radiation along the positive z axis? Negative z
axis? What about in the x− y plane?
Solution: The x− y plane is at θ = π/2, where cos θ = 0. There, we see that the E field is purely
in the φ̂ direction, and the B field is purely in the θ̂ direction. Thus the radiation is linearly
polarized in the x− y plane.
Meanwhile, on the z axis is either at θ = 0 (the North pole) or θ = π (the South pole). At both
places, the θ̂, φ̂ basis vectors are not continuous. Therefore let’s go back to the x̂, ŷ, ẑ basis.
On the North pole (θ = 0), r̂ = ẑ, so we need

ẑ × p = 2bqRe[eiωt(ŷ − ix̂)] , (20)
ẑ × (ẑ × p) = 2bqRe[eiωt(−x̂− iŷ)] . (21)
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Therefore our solution will look like

E = −2bqω2µ0

4πr Re[eiωt(−x̂− iŷ)] (22)

B = +2bqω2µ0

4πrc Re[eiωt(ŷ − ix̂)] . (23)

This is circularly polarized, and both the electric and magnetic field are rotating clockwise about
the ẑ axis as viewed from above, hence left circularly polarized. This makes sense, since an observer
at the North pole would observe the particles rotating clockwise.
Meanwhile on the South pole (θ = π), r̂ = −ẑ. We can do the cross products again, or just note
that we can reuse our previous calculations and flip the sign of B (and flip the sign of E twice,
which is no sign flip at all). Therefore we get

E = −2bqω2µ0

4πr Re[eiωt(−x̂− iŷ)] (24)

B = +2bqω2µ0

4πrc Re[eiωt(−ŷ + ix̂)] . (25)

This is also rotating about ẑ clockwise as viewed from the positive z direction, but the wave is
going in the negative z direction. Viewed from below it is counterclockwise, hence right circularly
polarized.

(g) Find the Poynting vector S, and its period average 〈S〉 at this large distance. Compare the angular
dependence of the radiation pattern in this system with the one we saw before (a center-fed split
dipole antenna).
Solution: Let’s take the real fields, Eqs. (17) and (18), to plug into

S = 1
µ0
E ×B . (26)

Plugging in we get

S = 1
µ0

(
+2bqω2µ0

4πrc

)2 [
cos2(θ) cos2(ωt+ φ) + cos2(ωt+ φ+ π/2)

]
r̂ . (27)

Taking the average over one period T = 2π/ω, we get

〈S〉 = b2q2ω4µ0

8πr2 (1 + cos2 θ) . (28)

(h) What is the total power emitted in radiation?
Solution: We have to integrate 〈S〉 across the whole sphere, to get

P = dE

dt
=
∫
〈S〉 · da =

∫
Srr

2d cos θdφ (29)

= b2q2ω4µ0

8π 2π
∫ +1

−1
(1 + cos2 θ)d cos θ (30)

P = 2b2q2ω4µ0

3 . (31)

(i) What would happen if you replaced the negative charge with another positive charge?
Solution: The dipole moment would vanish, so there would also be no dipole radiation. Instead
the radiation field would be dominated by octupole radiation, determined from the third time
derivative of the octupole moment.
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2. Getting higher multipoles. In this problem we will extend the derivation from dipole to higher
multipole order. We will do so for the scalar wave equation,

�f(t, r) = S(t, r) , (32)

which has the solution

f(t, r) = −1
4π

∫
S(tr, r′)

r d3r′ , (33)

where as before tr = t− 1
c
r.

(a) Show how to perform a Taylor series expansion on the first argument of S, so that instead of
evaluating S at different retarded times, we evaluate various time derivatives of S all at the single
time t0 ≡ t− r

c .
Solution: For now we will suppress the second argument r′, and write S(tr) = S(t0 + (tr − t0)),
where (tr − t0) is supposed to be small. Then we can expand

S(tr) =
∞∑
n=0

(tr − t0)n

n!
∂nS

∂tn

∣∣∣∣∣
t=t0

. (34)

Now if we plug in the definitions of tr and t0, notice that the difference is tr− t0 = t− r
c − (t− r

c ) =
r−r
c . Therefore we can express the Taylor series as

S(tr) =
∞∑
n=0

(r − r)n

n!cn
∂nS

∂tn

∣∣∣∣∣
t=t0

. (35)

(b) In the above Taylor series, you should see the combination (r − r) appearing. Using the series
expansion

√
1 + x = 1 + 1

2x−
1
8x

2 +O(x3), find the first two nonvanishing terms of (r − r). This
will be in terms of r, r′, and cos θ′ = r̂ · r̂′.
Solution: From the definition of r̂ = r − r′, we know that the magnitude can be written as

r =
√

r̂ · r̂ =
√
r2 + (r′)2 − 2r · r′ =

√
r2 + (r′)2 − 2rr′r̂ · r̂′ . (36)

Since r � r′, we want to use the ratio r′/r as a small parameter for expansions. Therefore factor
out an r from inside the square root,

r = r

√
1 +

(
r′

r

)2
− 2r

′

r
r̂ · r̂′ (37)

r ≈ r
[

1 + 1
2

(
−2r

′

r
r̂ · r̂′

)
+O

(
r′

r

)2
]
. (38)

Finally we get the difference

r − r ≈ r′r̂ · r̂′ = r̂ · r′ . (39)

(c) Combine your results to prove that the 1
r part of the solution for f is given by

f(t, r) = −1
4π

1
r

∞∑
n=0

1
n!

(
1
c

∂

∂t

)n ∫
S(t0, r′)(r̂ · r′)n d3r′ +O(r−2) . (40)

The nth term in the sum is determined by n derivatives of the nth multipole moment of the source.
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Solution: So far we have

f(t, r) ≈ −1
4π

∞∑
n=0

∫ 1
r

(r̂ · r′)n

n!cn
∂nS

∂tn

∣∣∣∣∣
t=t0

d3r′ (41)

where we are dropping errors of relative order 1/r2 in the expansion of r− r. Since we are already
making errors of that order, there is no sense in keeping around the whole denominator 1r , and we
might as well approximate it by 1

r , making the same order error. This can come outside of the
integral, since it does not depend on r′. Similarly, we can pull out the partial time derivatives.
After the dust settles we have the promised Eq. (40).
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