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Electromagnetism II (Phys. 402) — Prof. Leo C. Stein — Spring 2020

Problem Set 7 — SOLUTIONS

Due: Wednesday, Apr. 15, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Resonant cavity modes. Take what you’ve learned in the analysis of waveguides and apply it to a
resonant cavity. Suppose we have a hollow rectangular box of side lengths a ≥ b ≥ d, and this box is
made out of an excellent conductor. Solve Maxwell’s equations subject to the appropriate boundary
conditions at all the surfaces. Find the modes that are possible, which should now be labeled by three
integers (l,m, n), and find the associated frequency ωlmn. What is the general solution for E and B in
one of these modes?
Solution: We have to generalize the ansatz since we don’t know the z dependence a priori. We can try
E = E0(x, y, z)e−iωt and B = B0(x, y, z)e−iωt. With this ansatz, the time dependence is gone from
Maxwell’s Eqs., becoming

∇ ·E0 = 0 , ∇×E0 = iωB0 , (1)

∇ ·B0 = 0 , ∇×B0 = − iω
c2E0 . (2)

We have to solve these equations subject to the boundary conditions E‖ = 0, B⊥ = 0 on all surfaces.
Once we have a solution for either E or B, we can immediately find the other by taking a curl. Now
take a curl of one of the curl equations and plug in the other Maxwell Eqs. to find

∇2E = −ω
2

c2 E . (3)

This is just three separate, uncoupled copies of the Laplace equation. However the fields are coupled
through the original Maxwell Eqs. Let’s use separation of variables for Ex(x, y, z) = X(x)Y (y)Z(z).
Then we will find

1
X

d2X

dx2 + 1
Y

d2Y

dy2 + 1
Z

d2Z

dz2 = −ω
2

c2 . (4)

Therefore each term must be a constant, i.e. d2X/dx2 = −k2
xX and similarly for Y and Z with ky and

kz, satisfying k2
x + k2

y + k2
z = −ω2/c2. Now we can use the boundary conditions to fix the constants in

Ex(x, y, z) = [αx sin(kxx) + βx cos(kxx)][αy sin(kyy) + βy cos(kyy)][αz sin(kzz) + βz cos(kzz)] . (5)

Using E‖ = 0 at y = 0 and z = 0 tells us that βy = βz = 0. Using this same B.C. at y = b and z = d
tells us that ky = nπ/b and kz = lπ/d with integers n, l. If we apply the same approach to Ey and Ez,
we will get (changing the names of constants!)

Ex(x, y, z) = [αx sin(kxx) + βx cos(kxx)] sin(kyy) sin(kzz) (6)
Ey(x, y, z) = sin(kxx)[αy sin(kyy) + βy cos(kyy)] sin(kzz) (7)
Ez(x, y, z) = sin(kxx) sin(kyy)[αz sin(kzz) + βz cos(kzz)] , (8)

where kx = mπ/a with m another integer.
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We are still not done fixing the coefficients. Use ∇ ·E = 0 to find that

0 = kx[αx cos(kxx)− βx sin(kxx)] sin(kyy) sin(kzz)
+ ky sin(kxx)[αy cos(kyy)− βy sin(kyy)] sin(kzz)
+ kz sin(kxx) sin(kyy)[αz cos(kzz)− βz sin(kzz)] .

(9)

Evaluating this at x = 0 we find that kxαx sin(kyy) sin(kzz) = 0 for all y, z, so αx = 0. We similarly
find αy = αz = 0. What remains is the condition

0 = (−βxkx − βyky − βzkz) sin(kxx) sin(kyy) sin(kzz) , (10)

so the amplitudes have to satisfy βxkx + βyky + βzkz = 0.
To complete the solution, plug back in to ∇×E = iωB and solve for B to find

Bx = −i
ω

(βzky − βykz)(sin(kxx) cos(kyy) cos(kzz)) (11)

By = −i
ω

(βxkz − βzkx)(cos(kxx) sin(kyy) cos(kzz)) (12)

Bz = −i
ω

(βykx − βxky)(cos(kxx) cos(kyy) sin(kzz)) , (13)

where as before kx = mπ/a, ky = nπ/b, kz = lπ/d for integers l,m, n, and with βxkx + βyky + βzkz = 0.
The modes have frequencies

ω2 = ω2
lmn ≡ c2(k2

x + k2
y + k2

z) = c2π2 [(m/a)2 + (n/b)2 + (l/d)2] . (14)

2. Uniqueness of Lorenz gauge. Suppose somebody hands you a V,A that solve Maxwell’s equations
in the potential formulation, and you have verified that they satisfy the Lorenz gauge condition
∇ ·A+ 1

c2
∂V
∂t = 0. Can you perform a gauge transformation generated by a scalar function λ(t, r) to a

different gauge, but still satisfying the Lorenz gauge condition – what differential equation needs to be
solved? How much freedom is there for λ that will take you between two different Lorenz gauges?
Solution: A gauge transformation replaces the potentials V,A with new ones V ′,A′ which are related
by

V ′ = V − ∂λ

∂t
(15)

A′ = A+∇λ . (16)

To find what gauge transformations enforce the Lorenz gauge condition, we need them to satisfy

0 = ∇ ·A′ + 1
c2
∂V ′

∂t
(17)

0 =
(
∇ ·A+ 1

c2
∂V

∂t

)
+
(
∇2λ− 1

c2
∂2λ

∂t2

)
. (18)

The first term vanishes be cause we started in the Lorenz gauge. The second term says that any λ that
satisfies the wave equation will preserve the Lorenz gauge condition.

3. What are the electric and magnetic fields that correspond to

V = 0 , A = −1
4πε0

qt

r2 r̂ ? (19)

Find V ′,A′ in another gauge via the gauge transformation function λ = −(1/4πε0)(qt/r). What is this
new gauge?
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Solution:

E = −∇V − ∂E

∂t
= 1

4πε0
q

r2 r̂ (20)

B = ∇×A = 0 . (21)

Evidently this is the field of a stationary point charge at the origin. Now applying the gauge transfor-
mation,

V ′ = V − ∂λ

∂t
= 1

4πε0
q

r
(22)

A′ = A+∇λ = 0 . (23)

These were our earlier starting potentials in electrostatics. This is now the Coulomb gauge. It also
happens to be in Lorenz gauge.

4. Practice with finding retarded time. Suppose a particle follows the hyperbolic trajectory ξ(t) =
ẑ
√
b2 + c2t2.

(a) Draw the space-time diagram with z− t axes to show this particle’s motion. Draw the light signals
that would emanate from the particle.
Solution: The particle follows the black trajectory, and the blue lines denote light rays.

-3 -2 -1 1 2 3
z/b

-3

-2

-1

1

2

3
ct

(b) Notice that there are some regions in spacetime that do not know about the existence of the
particle! What points in the (t, z) plane (setting x = y = 0) haven’t yet received a signal from the
particle?
Solution: Points where z < −ct have not yet seen the particle.

(c) From the implicit equation for the definition of retarded time, show that tr(t, r) can be found by
solving a quadratic equation.
Solution: We want to solve for tr (which is really the function tr(t, r)) that satisfies the implicit
equation

c2(t− tr)2 = x2 + y2 + (z − ξ(tr))2 = x2 + y2 + z2 + (b2 + c2t2r)− 2z
√
b2 + c2t2r (24)

This does not obviously have a solution by radicals, but there is a +c2t2r on both the left and right
hand sides that cancel. After isolating the radical above and squaring,[

c2t2 − 2c2ttr − x2 − y2 − z2 − b2]2 = 4z2(b2 + c2t2r) . (25)

This is quadratic in tr on both sides so we can find a solution by radicals.
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(d) Actually solve it in the simpler case where your position is along the z axis, r̂ = zẑ, and in the
appropriate region so that you’ve received a signal from the particle. You can be either above or
below the particle; find the solution in both cases.
Solution: When x = y = 0, the solutions are

tr = −b
2 + (ct± z)2

2c(ct± z) . (26)

When your z coordinate is greater than the particle, your position is “inside” the hyperbola in the
above figure. There the function tr should be constant on “right”-going light rays, i.e. those with
positive slope in the figure; tr can remain constant when both z and t increase. Therefore to the
right is the negative root. Meanwhile if your z coordinate is less than the particle’s, your position
is “outside” the hyperbola in the figure. Then tr should be constant on “left”-going light rays, i.e.
those with negative slope; thus we want the positive root.

5. Start from the Liénard-Wiechart scalar potential for a charge in uniform linear motion,

V = q

4πε0
1√

(ct− r · v/c)2 + (1− v2/c2)(r2 − c2t2)
. (27)

Show that this can be rewritten in terms of R ≡ r − vt, the “instantaneous” separation, as

V = q

4πε0
1

R
√

1− (sin2 θ)v2/c2
, (28)

where θ is the angle between v and R.
Solution: Call the argument under the square root in Eq. (27)

I ≡ (ct− r · v/c)2 + (1− v2/c2)(r2 − c2t2) (29)
I = c2t2 + (r · v)2/c2 − 2t(r · v) + r2 − c2t2 − r2v2/c2 + t2v2 (30)
I = (r · v)2/c2 − 2(r · vt) + r2(1− v2/c2) + (vt)2 (31)

Everywhere you see vt, replace it with vt = r −R. This gives

I = (r · v)2/c2 − 2(r · (r −R)) + r2(1− v2/c2) + (r −R)2 (32)
I = (r · v)2/c2 − 2r2 + 2r ·R+ r2(1− v2/c2) + r2 +R2 − 2r ·R (33)
I = (r · v)2/c2 − r2v2/c2 +R2 (34)

Now notice that

(r · v)2 − r2v2 = ((R+ vt) · v)2 − (R+ vt)2v2 (35)
= (R · v)2 + v4t2 + 2(R · v)v2t−R2v2 − 2(R · v)tv2 − v4t2 (36)
= (R · v)2 −R2v2 = R2v2(cos2 θ − 1) = −(sin2 θ)R2v2 (37)

Therefore

I = R2(1− (sin2 θ)v2/c2) (38)

and so we have the desired result,

V = q

4πε0
1

R
√

1− (sin2 θ)v2/c2
. (39)
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6. Energy flux in the field of a uniformly moving charge.

(a) For a charge in uniform linear motion, what is the Poynting vector?
Solution: In uniform linear motion, we previously found that

B = 1
c2v ×E . (40)

When we plug this into the Poynting vector,

S = 1
µ0
E ×B = 1

µ0c2 [E × (v ×E)] (41)

S = ε0
[
E2v − (v ·E)E

]
(42)

which does not vanish.
(b) Suppose the charge’s velocity is purely in the ẑ direction, v = vzẑ. Integrate the energy flux

through the entire z = 0 plane. What is the resulting dE/dt, as a function of the particle’s position
d along the z axis?
Solution: We want the integral

dE

dt
=
∫
S · da =

∫ 2π

0

∫ ∞
0

Szρdρdφ (43)

where ρ =
√
x2 + y2 is the distance along the plane, and φ is the angle in the plane. Nothing

depends on φ so we just pick up a factor of 2π. Now we have to compute Sz from v = vz ẑ and E,

E = q

4πε0
1
γ2

R̂

R2(1− (sin2 θ)v2/c2)3/2 (44)

where γ2 = 1/(1− v2/c2). The norm of this is easy because |R̂| = 1, and then we also need the
component Ez for both v ·E and Ez in Sz. Suppose we are at position ρ when the particle is at
distance d along the axis. Then there is a right triangle with sides (d, ρ,R) where R2 = ρ2 + d2

and angle θ where tan θ = ρ/d. At this point ρ, the value of Sz is

Sz = ε0[E2v − E2v cos2 θ] = ε0E
2v sin2 θ . (45)

One factor of cos θ came from E · v and the other from the z component of E.
Now our integral is

dE

dt
= 2πε0v

∫ ∞
0

E2 cos2 θρdρ = 2πε0v
(

q
4πε0

1
γ2

)2 ∫ ∞
0

sin2 θ

R4(1− (sin2 θ)v2/c2)3 ρdρ . (46)

Here R and θ all depend on ρ. Let’s use θ instead as an integration variable, ρ = d tan θ so
dρ = d/ cos2 θdθ and 1/R = cos θ/d. Now we have

dE

dt
= 2πε0v

(
q

4πε0
1
γ2

)2 1
d2

∫ π/2

0

sin3 cos θdθ
(1− (sin2 θ)v2/c2)3 . (47)

One final change of variables: let u = sin2 θ and note that we already have du = 2 sin θ cos θdθ in
the integrand. This gives

dE

dt
= vq2

16πε0d2γ4

∫ 1

0

udu
(1− uv2c2)3 = vq2

32πε0d2 . (48)
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