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Electromagnetism II (Phys. 402) — Prof. Leo C. Stein — Spring 2020

Problem Set 6 — SOLUTIONS

Due: Wednesday, Apr. 1, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Energy/momentum transfer. Suppose a plane electromagnetic wave is traveling through vacuum
(constants ε0 and µ0) in the ẑ direction, with frequency ω, with the electric field linearly polarized in
the x̂ direction with amplitude E0I .

(a) This wave is incident on a perfectly absorbing sheet lying in the x− y plane. How much energy
does the sheet absorb per unit time, per unit area? How much momentum?
Solution: The sheet absorbs all the energy carried by the wave, computed from the energy flux
(Poynting vector),

dE

dtdA
= 〈S · n̂〉 = cu = 1

2cε0E
2
0I , (1)

where n̂ is the normal to the surface, which we take to be collinear with the direction of propagation.
The momentum transfer actually comes from −〈←→T · n̂〉, but you can also follow Griffiths and get
the same result. The result is

dp

dtdA
= −〈←→T · n̂〉 = ẑ

I

c
= 1

2ε0E
2
0I ẑ , (2)

which must be written as a vector!
(b) Now suppose we replace the perfect absorber with a perfectly reflecting mirror. How much energy

does the mirror absorb per unit time, per unit area? How much momentum?
Solution: If incident on a perfect reflector, all of the incident energy becomes reflected energy, so
since energy is conserved, there is no energy absorbed. The momentum flux in the incident wave is
dpI/dtdA = 1

2ε0E
2
0I ẑ, and if we perfectly reflect it then the momentum flux in the reflected wave

will have the opposite sign, dpR/dtdA = − 1
2ε0E

2
0I ẑ. But momentum must also be conserved, so

the mirror must have absorbed enough momentum so that the total momentum is the same as the
initial. Therefore the mirror absorbed the difference,

dpM
dtdA

= ε0E
2
0I ẑ . (3)

Next suppose we replace the perfect reflector with a partially-transmitting sheet of linear medium with
electric permittivity ε2 and magnetic permeability µ0. This sheet has some finite thickness but let us
focus only on the first interface, between vacuum and the material, and ignore everything that happens
downstream.

(c) For normal incidence, what are the reflected and transmitted electric and magnetic fields in terms
of the incident field?
Solution: This was worked out in Griffiths. Below are the complex fields; the physical fields are
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the real part.

ẼR = Ẽ0Re
i(−kz−ωt)x̂ (4)

B̃R = −1
c
Ẽ0Re

i(−kz−ωt)ŷ (5)

ẼT = Ẽ0T e
i(k2z−ωt)x̂ (6)

B̃T = 1
v2
Ẽ0T e

i(k2z−ωt)ŷ , (7)

where k = ω/c, v2
2 = 1/ε2µ2, k2 = ω/v2, and where

Ẽ0R = 1− β
1 + β

Ẽ0I (8)

Ẽ0T = 2
1 + β

Ẽ0I , (9)

with β ≡ µ1v1/µ2v2.
(d) What is the momentum density ℘ (which is real, not complex) in the transmitted field? (Hint:

how do the permittivity and permeability enter into ℘?)
Solution: First we get the Poynting flux in a linear medium, S = 1

µE ×B; and then if we redo
the derivation of linear momentum density in this same medium, we get

℘ = εµS = εE ×B . (10)

Plugging in the above electric and magnetic fields we find

〈℘T 〉 = ε

v2

1
2E

2
0T ẑ = ε

v2
E2

0I
2

(1 + β)2 ẑ . (11)

(e) What is the momentum density, separately, in (i) the incident field, and (ii) the reflected field?
Solution: These waves are in vacuum, so

℘ = ε0E ×B , (12)

〈℘I〉 = 1
2cε0E

2
0I ẑ , (13)

〈℘R〉 = − 1
2cε0E

2
0Rẑ = − 1

2cε0E
2
0I

(1− β)2

(1 + β)2 ẑ . (14)

(f) What is the momentum density in the sum of the incident and reflected fields?
Solution: Now we try to do the average of the combined fields. The complex fields are

Ẽ = ẼI + ẼR = E0I

(
eikz + 1− β

1 + β
e−ikz

)
eiωtx̂ , (15)

B̃ = B̃I + B̃R = 1
c
E0I

(
eikz − 1− β

1 + β
e−ikz

)
eiωtŷ . (16)

Take the real parts, multiply everything out in ℘ = ε0E×B (since we are in vacuum), and average
over a period. Then you will find

〈℘tot〉 = ε0
c
E2

0I
2β

(1 + β)2 ẑ . (17)

In particular note that if you take the previous result, you will find

〈℘I〉+ 〈℘R〉 = 〈℘tot〉 , (18)

which doesn’t really have to be the case, since ℘ is a nonlinear function of the fields.
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(g) Which of these results do you think is the correct way to compute the momentum transferred to
the partially-transmitting sheet? Justify your claim.
Solution: We want this result to agree with the case of reflection off of a perfect mirror, where
we had that pI = pR + pmirror. In the partially transmitting case, we should compute the mirror’s
momentum via pI = pTpR + pmirror. This is easiest to justify by thinking in the time domain
instead of frequency domain (which is the steady-state situation). Imagine sending in a short pulse
of electromagnetic radiation. At early times there will be an incident wave, having only pI . At late
times there will be a separate reflected pulse and transmitted pulse, with a momentum mismatch –
whose imbalance will tell us how much momentum must have been transferred to the mirror.

2. Reflection with horizontal polarization (long). In lecture we went through the derivation of
reflection where the electric field is “vertically” polarized, i.e. with the E field lying in the x− z plane
of incidence. Redo the calculation but with the horizontal polarization, i.e. with E ∝ ŷ.

(a) Write down the four boundary conditions, evaluated with the appropriate parallel/perpendicular
electric and magnetic fields, in terms of the angles θI , θT etc.
Solution: We will have the fields

ẼI = Ẽ0Ie
i(kI ·r−ωt)ŷ (19)

B̃I = 1
v1
Ẽ0Ie

i(kI ·r−ωt)(− cos θI x̂ + sin θI ẑ) (20)

ẼR = Ẽ0Re
i(kR·r−ωt)ŷ (21)

B̃R = 1
v1
Ẽ0Re

i(kR·r−ωt)(cos θI x̂ + sin θI ẑ) (22)

ẼT = Ẽ0T e
i(kT ·r−ωt)ŷ (23)

B̃T = 1
v2
Ẽ0T e

i(kT ·r−ωt)(− cos θT x̂ + sin θT ẑ) (24)

where we already know that θI = θR and the law of refraction (sin θT / sin θI = v2/v1). We can
impose the four boundary conditions

ε1E
⊥
1 = ε2E

⊥
2 (25a)

E
‖
1 = E

‖
2 (25b)

B⊥1 = B⊥2 (25c)
1
µ1

B
‖
1 = 1

µ2
B
‖
2 (25d)

The first is automatically satisfied. The second tells us Ẽ0I + Ẽ0R = Ẽ0T . The third tells us the
same thing, after using the law of refraction (or alternatively, this is where the law comes from).
The fourth tells us

Ẽ0I − Ẽ0R =
(
µ1v1 cos θT
µ2v2 cos θI

)
Ẽ0T . (26)

(b) Solve the resulting linear system for the ratios Ẽ0R/Ẽ0I and Ẽ0T /Ẽ0I , in terms of the earlier
variables α ≡ cos θT / cos θI and β ≡ µ1v1/µ2v2.
Solution: The solution to the system is

Ẽ0R

Ẽ0I
= 1− αβ

1 + αβ
(27)

Ẽ0T

Ẽ0I
= 2

1 + αβ
. (28)
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(c) Give an equation for Brewster’s angle θB where there is no (horizontal) reflection. Assuming that
µ1 ≈ µ2 to simplify, what do you find for the no-reflection condition?
Solution: No reflection occurs when αβ = 1. In terms of angles, this happens when

α =
√

1− sin2 θv2
2/v

2
1

cos θ = 1
β

= µ2v2

µ1v1
(29)

or

1 =
(
v2

v1

)2
[sin2 θ + µ1

2
µ2

1
cos2 θ] . (30)

If µ1 ≈ µ2, this only happens when v1 ≈ v2, but that just means the two media are optically
identical, so there wouldn’t be any reflection.

(d) Check that the reflection and transmission coefficients add up to 1 (recall that the transmission
coefficient is the ratio of intensities, rather than the square of the ratio of electric fields).
Solution: The reflection and transmission coefficients are

R =
(
E0R

E0I

)2
=
(

1− αβ
1 + αβ

)2
, T = ε2v2

ε1v1
α

(
E0T

E0I

)2
= αβ

(
2

1 + αβ

)2
. (31)

The sum is indeed 1,

R+ T =
(

1− αβ
1 + αβ

)2
+ αβ

(
2

1 + αβ

)2
= 1− 2αβ + α2β2 + 4αβ

(1 + αβ)2 = 1 . (32)
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3. Silicon carbide has an index of refraction of n = 2.65.

(a) Plot the ratios E0R/E0I and E0T /E0I as a function of θI , for the interface between SiC and air
(assuming µ1 = µ2 = µ0).

Solution:

0.5 1.0 1.5

-1.0

-0.5

0.5

1.0
n=2.65

E0R
E0 I

E0 T
E0 I

(b) What are the values for the two amplitude ratios at normal incidence?
Solution: At θ = 0, E0R/E0I ≈ −0.45 and E0T /E0I ≈ +0.55.

(c) What is Brewster’s angle?
Solution: θB ≈ 69.3◦ ≈ 1.21 rad.

(d) What is the “crossover” angle, where the reflection and transmission amplitudes are equal?
Solution: θx ≈ 78.5◦ ≈ 1.37 rad.

4. Griffiths 9.22a-b (phase and group velocities in deep water waves, and quantum mechanics). Note that
Griffiths writes “wave velocity” for what everyone calls the phase velocity.
Solution:

(a) Deep water waves satisfy

vph = ω

k
∝
√
λ . (33)

Therefore we have ω = Ck1/2 for some constant C. Then we can find the group velocity as

vg = dω

dk
= C

2
√
k

= 1
2
ω

k
= 1

2vph . (34)

(b) In the phase factor, we identify kx−ωt = px−Et. So we find k = p and ω = E = p2/2m = k2/2m.
From this dispersion relationship we find the phase and group velocities,

vph = ω

k
= k

2π (35)

vg = dω

dk
= k

π
= 2vph. (36)

The classical particle speed is v = p/m = k/m = vg.

Page 5 of 5


