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Electromagnetism II (Phys. 402) — Prof. Leo C. Stein — Spring 2020

Problem Set 5 — SOLUTIONS

Due: Wednesday, Mar. 18, 2020, by 5PM

Material: The midterm covers the material so far except for last week and this week (linear oscillators).

Due date: Wednesday, Mar. 18, 2020 by 5PM to 205 Lewis Hall. If my door is closed, please slide the
exam under my door. Late exams will require extenuating circumstances.

Logistics: The exam consists of this page plus two pages of questions. Do not look at the problems until
you are ready to start it.

Time: The work might expand to eat up as much time as you allot – therefore I highly recommend you
restrict yourself to no more than 5 hours cumulative time spent on these problems. You may take as many
breaks as you like, not counted against the 5 hours. You should not be consulting references, working
on the problems, or discussing with others during the breaks.

Resources: The midterm and final are not collaborative. All questions must be done on your own,
without consulting anyone else. You may consult your own notes (both in-class and notes on this class you
or a colleague in the class have made), the textbook by Griffiths, and solution sets on the course website.
You may not consult any other material, including other textbooks, the web (except for the current
Phys. 402 website), material from previous years’ Phys. 402 or any other classes, or copies you have made of
such material, or any other resources. Calculators and symbolic manipulation programs are not allowed.
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1. Falling conducting ring. Let’s model the Earth as a perfect sphere, and model its magnetic field
(above the ground) as a pure magnetic dipole given by moment mE , located at the center of the sphere.

(a) Write down a coordinate-independent expression for this B field.
Solution: The spherical coordinate result for the B field generated by a dipole m aligned with
the ẑ axis is computed in Griffiths. In Eq. (5.86) he gives

Bdip = µ0m

4πr3 (2 cos θr̂ + sin θθ̂) . (1)

From here you can use some trigonometry to go to the coordinate-independent expression. This
exercise is Griffiths’ problem 5.33. The result is

BE = µ0

4πr3 [3(mE · r̂)r̂ −mE ] . (2)

Now suppose we have a conducting circular ring of radius s and conductivity σ. The ring is made of
wire whose cross-sectional area is A.

(b) In terms of the given quantities, what is the ring’s total resistance R?
Solution: If the difference in EMF from one end to the other is V , then there is an electric field
of magnitude E = V/`, where ` = 2πs. From “Ohm’s law” in a conductor, J = σE = σV/`. The
total current through the whole cross-section is I = JA = (Aσ/`)V . Rearranging to put this in
the form of the more common Ohm’s law V = IR, we have R = `/Aσ = 2πs/Aσ.

Now let’s say we’re standing on the Earth at a colatitude θ measured from the magnetic north pole.
We’re holding this ring so that its symmetry axis is parallel to the ground, and is pointing toward
magnetic north. We drop it from distance r from the center of the Earth.

(c) Find the magnetic flux Φ as a function of r and θ.
Solution: Here is a diagram of the geometry of the situation:

Since the ring is very small, we can approximate the B field as constant across the location of the
ring. So, we will approximate:

Φ =
∫
S
B · da ≈ πs2n̂ ·BE(r, θ) (3)

= πs2µ0

4πr3 [3(mE · r̂)(n̂ · r̂)− n̂ ·mE ] (4)

Φ = −s
2µ0

4r3 n̂ ·mE = −s
2µ0

4r3 mE sin θ . (5)

Keep in mind that Φ depends on the orientation of the surface S. We have chosen the orientation
by the direction of the n̂ vector which is pointing North.
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(d) Assume the motion of the ring is dominated by the force of gravity, and find the EMF through the
ring.
Solution: The EMF due to the motion of the ring is

E = − d

dt
Φ = s2µ0mE

4
d

dt

sin θ
r3 . (6)

To leading approximation, the colatitude and orientation of the ring will not change. So, this is
approximately

E = s2µ0mE sin θ
4

−1
r4

dr

dt
≈ s2µ0mE sin θ

4
gt

R4
E

. (7)

In the last approximation, dr/dt was approximated by the motion being dominated by gravity.
The ring will soon hit the ground, so we model the vertical velocity as if it is uniformly accelerated
with the surface gravity g ≈ 9.8 m/s2. So, here we approximated dr/dt ≈ −gt, for short times t,
and in the denominator, r ≈ RE the radius of the Earth.
Keep in mind that E also depends on the orientation of S or equivalently the path P = ∂S. This
orientation is chosen to be consistent with the right-hand rule, i.e. if your right thumb points in
the direction n̂, this is the EMF around the loop that your fingers are curling.

Suppose the ring has a self-inductance L. Now you can model the ring as a circuit with a source of
EMF, a resistor, and an inductor.

(e) Draw the circuit diagram.

Solution:

E

R

L

(f) Write down a differential equation for the current as a function of time. Solve for I(t) (assuming
the ring will only fall a short distance, not through the Earth!). From the point of view of an
observer looking at the ring from a point closer to the magnetic north pole, is the current flowing
clockwise or anti-clockwise?
Solution: The diffeq we want to solve is

E = IR+ L
dI

dt
, (8)

where E = Ct. From Eq. (7) the constant C is

C = s2µ0mEg sin θ
4R4

E

. (9)

Then solving the diffeq, with the initial condition I(0) = 0, the solution is

I(t) = Cτ

R
[t/τ − 1 + exp(−t/τ)] , (10)

where τ = L/R. Note that this current is in the direction that your right hand’s fingers are curling
if your right thumb points in the direction n̂. The quantity in square brackets is positive, and so
is the prefactor Cτ/R, so this is a positive current in said direction. An observer who is closer to
the North pole will report the current is anti-clockwise.
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Now that there is a current flowing in the ring, we can model it as a small magnetic dipole.

(g) What is its dipole moment mring?
Solution: mring = I(t)a ≈ πs2I(t)n̂ = −πs2I(t)θ̂, at least until it starts to rotate.

(h) What is the torque (both magnitude and direction) on the ring? Describe which way it will rotate
(a diagram may be helpful).
Solution: The torque on a magnetic dipole in an external B field is

N = m×B . (11)

Here we want to evaluateN = mring×BE . Now it is actually easier to use BE in polar coordinates
from Eq. (1), since n̂ = −θ̂. The cross product −θ̂ × θ̂ vanishes. The only contribution comes
from the part proportional to −θ̂ × r̂ = φ̂. So, the torque is

N̂ = πs2I(t)2µ0mE cos θ
4πR3

E

φ̂ . (12)

Notice that cos θ is positive in the Northern hemisphere and negative in the South. The ring’s
normal n̂ will be torqued to rotate around φ̂ positively in the North, and negatively in the South,
i.e. it will try to align with mE .

(i) What is the magnetic force on the ring (magnitude and direction)?
Solution: Griffiths writes the magnetic force on a dipole as

F = ∇(m ·B) . (13)

However this is actually assuming your m is independent of position. Notice that our mring
implicitly depends on r and θ since C ∝ sin θ/r4. We must not take the derivative of anything in
m when computing the force – force should be proportional to m (review the derivation of the
force, or Prob. 6.22, to check). The way Griffiths writes this is just for notational convenience. To
make this clearer, we should really write magnetic force as

Fi = mj∇iBj . (14)

To compute ∇iBj let’s write the index notation for Bj (replacing all cases of r̂ with r/r). Here
we drop the subscript E from mE to avoid confusion.

Bj = µ0

4πr5 3mkrkrj −
µ0

4πr3mj . (15)

Now we take the ∇i derivative, recalling that ∇irj = δij , and ∇ir = r̂i = ri/r. After using the
product and chain rules and the preceding derivatives, we get

∇iBj = µ0

4π 3mk

[
−5
r6

ri
r
rkrj + 1

r5 δikrj + 1
r5 rkδij

]
− µ0

4πmj
−3
r4

ri
r
. (16)

As a sanity check, note that every term here goes as 1/r4. Now expand, contract the deltas (e.g.
mkδik = mi), to get

∇iBj = µ0

4πr4 [−15(m · r̂)r̂ir̂j + 3(mir̂j +mj r̂i) + 3(m · r̂)δij ] . (17)

As a second sanity check, note that if we take the trace, δij∇iBj = ∇ ·B we get the divergence of
B, which must vanish. Indeed it is easy to check that the trace of the above vanishes.
Now finally contracting with mring, we would get

Fi = µ0

4πr4

[
−15(m · r̂)r̂i(r̂jmj

ring) + 3(mi(r̂jmj
ring) + (mjm

j
ring)r̂i) + 3(m · r̂)mi

ring

]
. (18)
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Or, going back to vector notation and replacing the E subscript on mE ,

F = µ0

4πr4 [−15(mE · r̂)(r̂ ·mring)r̂ + 3(mE(r̂ ·mring) + (mE ·mring)r̂) + 3(mE · r̂)mring] .
(19)

The dot products we need are mE · r̂ = mE cos θ, mring · r̂ = 0, and mE ·mring = mEmring sin θ.
Plugging these in we get

F = µ0

4πr4 [3(mE ·mring)r̂ + 3(mE · r̂)mring] (20)

F = 3µ0mEmring

4πr4

[
sin θr̂ − cos θθ̂

]
. (21)

2. Magnetic field between two coils. We have two circular current loops in our lab, each of radius R.
We place them both on the z axis with their symmetry axes also along z. One of them is at height
z = +a, and the other is at height z = −a. We run the same current I through both coils.

(a) Write down an integral for the mutual inductance between the two loops. (This should be an
ordinary one-dimensional integral; make as much progress as possible but you may not be able to
completely evaluate it)
Solution: Starting from the Neumann formula,

M = µ0

4π

∮
L1

∮
L2

d`1 · d`2
r , (22)

where L1 and L2 are loops 1 and 2. Parameterize each loop by an angle θ1 and θ2 where this
is the angle in the x − y plane measured from the x axis. The arc length is d`1 = Rdθ1n̂1 and
similarly for loop 2. The dot product between the two direction vectors is n̂1 · n̂2 = cos(θ1 − θ2).
The separation r can be computed from the vertical distance, 2a, and the distance in the x−y plane,
which we will call p, as r2 = (2a)2 +p2. To compute p you can use the law of cosines for an isosceles
triangle going from the origin to the points (R, θ1) and (R, θ2) in polar coordinates (the opening
angle at the origin is then |θ1 − θ2|). From law of cosines we get p2 = R2 +R2 − 2R2 cos(θ1 − θ2).
Combining we have

r2 = 4a2 + 2R2(1− cos(θ1 − θ2)) . (23)

Put this into the Neumann formula, which you see depends only on the difference θ1 − θ2. That
means you can change one integration variable to θ′ = θ1 − θ2, and then do the other integration
analytically, resulting in a single integral,

M = µ0

2

∫ 2π

0

R2 cos θ′dθ′√
4a2 + 2R2(1− cos θ′)

(24)

M = µ0R

2

∫ 2π

0

cos θ′dθ′√
4a2/R2 + 2(1− cos θ′)

. (25)

This integral can in fact be represented in terms of special functions called “complete elliptic
integrals,” but that is not necessary here.

(b) What is the magnetic field along the z axis, B(ρ = 0, z), in the region between the two loops?
Show that ∂Bz

∂z

∣∣∣
z=0

= 0.
Solution: Because of linearity, we will be able to superpose the magnetic fields of each individual
loop. Consider an individual loop of radius R, lying in the x− y plane. We can get the magnetic
field from the Biot-Savart law,

B(r) = µ0

4π I
∮
d`′ × r̂

r2 . (26)
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On the z axis, because of azimuthal symmetry, the components of B in the x− y plane must add
up to 0, so the only component we need to compute is Bz. Again from azimuthal symmetry, the
contribution from every infinitesimal of the loop will be the same, so we just need 2π times the
infinitesimal contribution at one point.
Consider contribution to Bz(z) from the element of wire on the x axis. The separation is
r2 = R2 + z2. d`′ points in the ŷ direction, and r̂ is a unit vector pointing from (R, 0, 0) to 0, 0, z.
Computing the z component of the cross product gives (d`′ × r̂)z = dl′ cos θ where tan θ = z/R.
So we would find

Bsingle
z (z) = µ0I

4π

∫ cos θdl′

R2 + z2 = µ0I

2
R2

(R2 + z2)3/2 . (27)

This is positive both above and below the plane of the loop.
Now we superpose two of these solutions, putting one loop at z = −a, and the other at z = +a.
The result is

Bz(z) = µ0IR
2

2

[
1

[R2 + (z − a)2]3/2 + 1
[R2 + (z + a)2]3/2

]
. (28)

The z derivative is

∂Bz
∂z

= µ0IR
2

2

[ − 3
2 2(z − a)

[R2 + (z − a)2]5/2 +
− 3

2 2(z + a)
[R2 + (z + a)2]5/2

]
. (29)

Evaluating at z = 0 there is a cancellation, ∂Bz/∂z|z=0 = 0.
(c) Find the value of a that will make the z component of the magnetic field more uniform at the

center, so as to satisfy

∂2Bz
∂z2

∣∣∣
z=0

= 0 .

Solution: Compute the second derivative,

∂2Bz
∂z2 = µ0IR

2

2

[
15(z − a)2

[R2 + (z − a)2]7/2 + 15(z + a)2

[R2 + (z + a)2]7/2 + −3
[R2 + (z − a)2]5/2 + −3

[R2 + (z + a)2]5/2

]
.

(30)

Evaluate this at z = 0 to find

∂2Bz
∂z2

∣∣∣∣∣
z=0

= µ0IR
2

2

[
30a2

(R2 + a2)7/2 + −6
(R2 + a2)5/2

]
. (31)

We want this to vanish, so we solve for a in this equation,

0 = 30a2

(R2 + a2)7/2 + −6
(R2 + a2)5/2 (32)

0 = 30a2 − 6(R2 + a2) . (33)

This quadratic is easily solved with the two solutions being a = ±R2 , which is really the same
solution. This configuration is known as a Helmholtz coil.

3. Taking a few derivatives. Suppose we create an electromagnetic field given by

E = (β sin y x̂+ β cosx ŷ + α sin z ẑ)e−t ,
B = −β(cos y + sin x)e−t ẑ .

(a) Show that ∇ ·B = 0 is satisfied.
Solution: Only nonvanishing component is Bz, so only need ∂Bz/∂z, which is trivially zero.
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(b) Show that ∇×E = −∂B
∂t is satisfied.

Solution:

∇×E =
(
∂Ez
∂y
− ∂Ey

∂z

)
x̂+

(
∂Ex
∂z
− ∂Ez

∂x

)
ŷ +

(
∂Ey
∂x
− ∂Ex

∂y

)
ẑ (34)

= −βe−t (sin x+ cos y) ẑ (35)

= −∂B
∂t

(36)

(c) What charge density ρ and current density J would produce this electromagnetic field?
Solution: Notice that only Ez contributes to the divergence below.

ρ = ε0∇ ·E = ε0

(
∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

)
(37)

= ε0α cos ze−t (38)

J = 1
µ0

[
∇×B − µ0ε0

∂E

∂t

]
(39)

=
[
β(1 + ε0µ0)

µ0
(sin yx̂+ cosxŷ) + ε0α sin zẑ

]
e−t (40)

(d) Show that ∂ρ
∂t +∇ · J = 0 is satisfied.

Solution: Here only Jz contributes to the divergence so it’s again simple,

∇ · J = ε0αe
−t cos z = −∂ρ

∂t
. (41)

(e) Compute the Poynting vector S of this field configuration.
Solution:

S = µ0E ×B = β2e−2t(cos y + sin x)
µ0

(− cosxx̂+ sin yŷ) (42)

4. Partially overlapping solenoids. Suppose we have two almost-identical
solenoids: they have length `, with N total turns, giving n ≡ N/` turns per
unit length, and the wire in each solenoid has a total resistance R. One of
them has radius r + ε and the other has radius r, so they can just barely
nest within each other (but for calculation purposes we can consider both of
them to have radius r).
We place both of these solenoids along the z axis, with a length ξ of overlap
(see figure). However this overlap is not fixed – the two solenoids can move
in response to forces, and thus ξ(t) may depend on time.
Compute the mutual inductance M(ξ) of the two solenoids, which will depend on ξ (you can assume
that when you run current through one of the solenoids, it will create a uniform magnetic field inside
and no magnetic field outside).
Solution: Suppose we turn on current I1 through solenoid 1, which will create a magnetic field
B = µ0nI1ẑ in the interior. Now consider an individual loop of solenoid 2, which overlaps with the
interior of solenoid 1. The flux through a single loop will be Φloop =

∫
B · da = πr2µ0nI1. The total

flux in circuit 2 is due just to those loops (there are nξ(t) of them) of the solenoid 2 that overlap with
solenoid 1. Therefore we have

Φ2 = Φloop(nξ(t)) = πr2µ0nI1nξ(t) , (43)
M = M(ξ) = πr2µ0n

2ξ(t) , (44)

where in the last line all we did is find the coefficient in Φ2 = MI1. Importantly, note that the mutual
inductance is a function of ξ and thus can be a function of time.
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5. Magnetic fluid in a solenoid. Let’s take a solenoid of radius r and height h, with n ≡ N/h turns
per unit length. We hold this solenoid vertically just on the surface of a bath of incompressible fluid of
density ρ. This fluid is a linear magnetic medium with magnetic susceptibility χm, either positive or
negative. Suppose that at some instant, this fluid also fills the solenoid up to height ζ (i.e. the inside of
the solenoid has fluid in the range 0 ≤ z ≤ ζ, and it has air in the range ζ ≤ z ≤ h).

(a) What is the magnetic field B in each of the two regions (fluid and air)?
Solution: Recall the solution for the magnetic field in a solenoid filled with a linear medium of
given susceptibility (Griffiths’ example 6.3): the field inside is B = µnI = µ0(1 + χm)nI for the
appropriate value of χm. In other words, we simply replace µ0 with µ = µ0(1 + χm) in the fluid.
So, the complete field is

B = ẑ

{
µ0nI , ζ ≤ z ≤ h
µnI , 0 ≤ z ≤ ζ .

(45)

(b) Find the total self-inductance L of the partially-filled solenoid, as a function of ζ.
Solution: Let’s treat the fluid-filled and air-filled parts of the solenoid as two separate solenoids
that are in series with each other. If the two separate parts have self-inductances Lfluid and Lair,
the total self-inductance will be L = Lfluid + Lair.
Now, the self-inductance of the air (or vacuum) part was computed as an exercise in the book. Let’s
consider the fluid-filled part. The flux through one winding will be Φone = πr2µnI, so the total
flux is Φ = (πr2µnI)(ζn), since there are ζn windings in this part. This gives a self-inductance
of Lfluid = πr2µn2ζ. Similarly, the self-inductance of the air part is Lair = πr2µ0n

2(h− ζ). This
gives a total inductance of

L = πr2n2(µζ + µ0(h− ζ)) = πr2n2µ0(h+ ζχm) . (46)

(c) Find the energy stored in the magnetic field as a function of ζ. There are two (or more) ways to
do this – check the correctness of your result by showing both calculations.
Solution: One approach is to use the energy stored in an inductor,

E1 = 1
2LI

2 = I2

2 πr
2n2µ0(h+ ζχm) (47)

On the other hand, a second approach is to use the volume integral of the energy density in the
magnetic field plus the energy necessary to polarize the material (if present). Recall that for a
linear medium, this works out to

E2 =
∫
V

1
2µB

2 d3Vol , (48)

where we use µ0 in the vacuum (or air) region, and use µ = µ0(1 + χm) in the fluid region. Since
B2 is roughly constant in each region, and the B field is very small outside, we approximate this as

E2 = 1
2µ0

B2
airVair + 1

2µ0(1 + χm)B
2
fluidVair , (49)

where the respective volumes are Vfluid = πr2ζ and Vfluid = πr2(h− ζ). Combining everything we
see that the two approaches give the same energy, E1 = E2.

(d) If we turn on a current in the solenoid, the fluid may be pulled upward, depending on the sign of
the susceptibility. Will a positive or negative χm be pulled upward?
Solution: The fluid will be pulled upward if that would decrease the energy, so we want the
coefficient of ζ to be negative. This means the fluid will be pulled upward for χm < 0, i.e. for a
diamagnetic material.
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(e) There is an energy cost to raising this fluid to height ζ. Write the total energy (gravitational and
magnetic). Find the equilibrium height ζeq which the fluid achieves as a function of the current I
(and any other quantities in the problem).
Solution: The gravitational potential energy (density) of each element of fluid of density ρ at a
height z is ε = ρgz. If the fluid extends between 0 ≤ z ≤ ζ, then the total gravitational potential
energy will be

Eg =
∫ ζ

0
πr2 ρgz dz = πr2ρg

ζ2

2 . (50)

So, the total energy as a function of fluid height ζ is

E(ζ) = I2

2 πr
2n2µ0(h+ ζχm) + πr2ρg

ζ2

2 . (51)

The equilibrium value ζeq will be at the minimum of the energy, where

E′(ζ) = πr2(ρgζ + I2n2µ0χm) , (52)
E′(ζeq) = 0 . (53)

Solving for ζeq we find

ζeq = −χm
I2n2µ0

2gρ , (54)

as long as this quantity ends up in the range 0 ≤ ζeq ≤ h (notice that ζeq is positive when χm is
negative, as found above). This is the case so long as I2 ≤ 2ρgh/(µ0n

2χm).

6. Standing electromagnetic wave. Suppose we superimpose the following two complex, monochro-
matic waves, both with frequency ω: one traveling in the ẑ direction, and the electric field is polarized
in x̂ with amplitude Ẽ0; and the second is traveling in the −ẑ direction, with electric field polarized in
−x̂ with the same amplitude Ẽ0.

(a) Write down the complex Ẽ, B̃ fields for each of the two waves separately.
Solution: We will denote the left-moving and right-moving fields as ẼL, ẼR, etc.

ẼR = +Ẽ0 exp[i(kz − ωt)]x̂ , (55)

B̃R = +1
c
Ẽ0 exp[i(kz − ωt)]ŷ , (56)

ẼL = −Ẽ0 exp[i(−kz − ωt)]x̂ , (57)

B̃L = +1
c
Ẽ0 exp[i(−kz − ωt)]ŷ . (58)

(b) Now superimpose them and find the real field that arises from the superposition.
Solution: The physical fields are E = Re[ẼL + ẼR] and B = Re[B̃L + B̃R]. This gives

E = 2E0 sin(kz) sin(ωt)x̂ , (59)

B = 2
c
E0 cos(kz) cos(ωt)ŷ . (60)

(c) Find the part of the period-averaged energy density due just to the electric field and comment on
its pattern in space.
Solution: We are going to compute 〈uE〉 = 〈 1

2ε0E
2〉,

〈12ε0E
2〉 = 1

T

∫ T

0

1
2ε0(2E0 sin(kz) sin(ωt))2dt (61)

〈12ε0E
2〉 = ε0E

2
0 sin2(kz) , (62)

where the period is T = 2π/ω. Notice that this is spatially modulated.
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(d) Now examine the total period-averaged energy density 〈u〉 (due to both the E and B fields), and
again comment on its pattern in space.
Solution: Repeating for the magnetic field we find 〈uB〉 = ε0E

2
0 cos2(kz), of the same amplitude

and also spatially modulated, but with a different phase. Thus the sum is not spatially modulated:
〈u〉 = ε0E

2
0 .

(e) Finally, find the period-averaged Poynting vector, 〈S〉.
Solution: Computing the real Poynting vector we find

S = 1
µ0
E ×B = 4

µ0c
E2

0 sin(kz) sin(ωt) cos(kz) cos(ωt)ẑ . (63)

Now when we period average we need the integral

1
T

∫ T

0
sin(ωt) cos(ωt)dt = 0 . (64)

Therefore 〈S〉 = 0, and there is no energy flux.
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