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Problem Set 4 — SOLUTIONS

Due: Wednesday, Mar. 4, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Griffiths problem 9.2 (Standing waves are superposed traveling waves).
Solution: Suppose we have the standing wave f(z, t) = A sin(kz) cos(kvt). Check that it solves the
wave equation:

∂f

∂z
= kA cos(kz) cos(kvt) (1)

∂2f

∂z2 = −k2A sin(kz) cos(kvt) = −k2f (2)

∂f

∂t
= −kvA sin(kz) sin(kvt) (3)

∂2f

∂t2
= −(kv)2A sin(kz) cos(kvt) = −(kv)2f . (4)

Thus evaluating the wave equation

−1
v2

∂2f

∂t2
+ ∂2f

∂z2 = 1
v2 (kv)2f − k2f = 0 X (5)

Next representing this as a superposition of left and right traveling waves. All we need is the trig
addition identity sin(α+ β) = sinα cosβ + cosα sin β. You can immediately verify that

f(z, t) = A sin(kz) cos(kvt) = A

2 [sin(kz − kvt) + sin(kz + kvt)] . (6)

2. Griffiths problem 9.5 (Wave incident on a boundary where two materials meet).
Solution: We will impose two boundary conditions at the interface z = 0: first, f(0−, t) = f(0+, t),
and second, ∂f∂z

∣∣
0− = ∂f

∂z

∣∣
0+ . Our functions to the left and right are:

f(z, t) =
{
gI(z − v1t) + hR(z + v1t) z < 0
gT (z − v2t) z > 0 .

(7)

The first B.C. we impose is f(t, 0−) = f(t, 0+). This tells us that

gI(−v1t) + hR(+v1t) = gT (−v2t) (8)

gI(w) + hR(−w) = gT (v2

v1
w) , (9)

where we have defined w ≡ v1t. The second B.C. we impose is

∂f

∂z

∣∣∣∣∣
0+

= ∂f

∂z

∣∣∣∣∣
0+

(10)

g′I(w) + h′R(−w) = g′T (v2

v1
w) . (11)
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Let us integrate this with respect to w. The functions h′R and g′T will need variable substitutions to
perform the integrals, giving

gI(w)− hR(−w) = v1

v2
gT (v2

v1
w) + C1 , (12)

with some integration constant C1 that depends on initial conditions. The two equations (9) and (12)
form a linear system for hR(−w) and gT (v2w/v1). Add the two equations and change w to u = v2w/v1
to find

gT (u) = 2v2

v1 + v2
gI(

v1

v2
u) + C2 , (13)

where C2 = −C1v2/(v1 + v2). Now eliminating gT from the system, we solve for hR(−w) (and now
present it as a function of u = −w),

hR(w) = v2 − v1

v1 + v2
gI(−w) + C2 . (14)

3. Griffiths problem 9.8 (Circularly polarized wave).
Solution: We are working with the wave

f̃ = Ãei(kz−ωt)
(
eiδv x̂ + eiδh ŷ

)
(15)

where we have set the x̂ direction to be vertical, and we are using δv = 0, δh = π/2, so

f̃ = Ãei(kz−ωt) (x̂ + iŷ) . (16)

(a) The physical string motion is given by f = Re[f̂ ]. Without loss of generality, let’s choose Ã = A
to be real, and take z = 0. The string motion will be

f = ARe[e−iωt (x̂ + iŷ)] (17)
= A [cos(−ωt)x̂ + cos(π/2− ωt)ŷ] = A [cos(ωt)x̂ + sin(ωt)ŷ] . (18)

This is parametrically describing a point moving around the circle of radius A in the x− y plane.
At time t = 0, it is on the positive x axis. At time π/2ω, it is on the positive y axis. Thus if you
are at positive z and looking toward the origin, you will see the point circles counter-clockwise.
To make it circle clockwise, set δh = −π/2.

(b)

(c) Just hold the end while moving your wrist or arm periodically in a steady circle.

4. Griffiths problem 9.9a-b (The real E and B fields from two example monochromatic plane waves).
Solution:

(a) k = (−ω/c)x̂ and n̂ = ẑ. From these we can compute k·r = (−ω/c)x (recall that r = xx̂+yŷ+zẑ).
We can also compute k̂ × n̂ = ŷ. Now we can write down the real fields,

E = E0 cos(ω
c
x+ ωt)ẑ , B = E0

c
cos(ω

c
x+ ωt)ŷ . (19)
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(b) k should have direction (1, 1, 1) but magnitude ω/c. The normalization constant is found very
easily, and k = (ω/c)(x̂ + ŷ + ẑ)/

√
3. To find n̂, write it as n̂ = ax̂ + bẑ, where a2 + b2 = 1. Now

require that n̂ · k = 0 and find n̂ = (x̂− ẑ)/
√

2. Now we can compute k · r = (ω/
√

3c)(x+ y + z)
and k̂ × n̂ = (−x̂ + 2ŷ − ẑ)/

√
2. Combining we get

E = E0 cos
[
ω√
3c

(x+ y + z)− ωt
]

(x̂− ẑ)/
√

2 , (20)

B = E0

c
cos
[
ω√
3c

(x+ y + z)− ωt
]

(−x̂ + 2ŷ − ẑ)/
√

6 . (21)

5. Griffiths problem 9.12 (The Maxwell stress tensor due to a monochromatic plane wave traveling in the
z direction).
Solution: Starting from

Tij = ε0

(
EiEj −

1
2δijE

2
)

+ 1
µ0

(
BiBj −

1
2δijB

2
)
, (22)

we will plug in a plane wave traveling in the z direction, linearly polarized in the x direction, namely

E = E0 cos(kz − ωt)x̂ , B = E0

c
cos(kz − ωt)ŷ . (23)

The only non-vanishing components in this case are the diagonal ones, which take on values

Txx = ε0

(
ExEx −

1
2E

2
)

+ 1
µ0

(
−1

2B
2
)

= 1
2

(
ε0E

2 − 1
µ0
B2
)

= 0 , (24)

Tyy = ε0

(
−1

2E
2
)

+ 1
µ0

(
ByBy −

1
2B

2
)

= 1
2

(
−ε0E2 + 1

µ0
B2
)

= 0 , (25)

Tzz = ε0

(
−1

2E
2
)

+ 1
µ0

(
−1

2B
2
)

= −ε0E2
0 cos2(kz − ωt) = −u . (26)

This is consistent with the fact that Tij quantifies the amount of i−momentum being transported in
the j direction. In this case we have momentum flux density = energy density.

6. Stress in index notation (extra credit). Suppose you have a monochromatic plane wave where the
direction and k-number are given by the vector k, or ki in index notation; and this wave is linearly
polarized with unit polarization vector ê, or êi in index notation, where k · ê = 0 = kiêi. Find the
Maxwell stress tensor Tij in index notation, in terms of the above quantities.
Solution: Translating the linearly-polarized plane wave solution into index notation, we have

Ei = êiE0 cos(kjxj − ωt) , (27)

Bi = εijkk̂
j êk

E0

c
cos(kjxj − ωt) . (28)

(We must be careful since k is being used as both an index and the name of a vector). Now we need to
insert this into

Tij = ε0

(
EiEj −

1
2δijE

2
)

+ 1
µ0

(
BiBj −

1
2δijB

2
)
, (29)

and make use of the identity for the product of two epsilon tensors, which can be compactly written as

εijkεlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣ = δil
(
δjmδ

k
n − δjnδkm

)
− δim

(
δjl δ

k
n − δjnδkl

)
+ δin

(
δjl δ

k
m − δjmδkl

)
. (30)
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First, let’s compute both E2 and B2. The first is very simple,

E2 = EiE
i = E2

0 êiê
i cos2 S = E2

0 cos2 S , (31)

where S ≡ kjxj − ωt and we have used the fact that êiêi = ê · ê = 1. Now for the more complicated
B2, where we have to make use of Eq. (30),

B2 = BiB
i = E2

0
c2 cos2 S εijkε

i
lmk̂

j êkk̂lêm (32)

B2 = E2
0
c2 cos2 S

(
(k̂j k̂j)(êkêk)− (k̂j êj)(k̂kêk)

)
(33)

B2 = E2
0
c2 cos2 S (34)

where have also made use of êiêi = ê · ê = 1 and êik̂i = ê · k̂ = 0.
Finally we can assemble the Maxwell stress tensor,

Tij = ε0E
2
0 cos2 S

[(
êiêj −

1
2δij

)
+
(
εiklεjmnk̂

kêlk̂mên − 1
2δij

)]
. (35)

Now we need to expand out the somewhat complicated expression εiklεjmnk̂
kêlk̂mên. After using

Eq. (30), contracting the δ tensors where possible, and using ê · ê = k̂ · k̂ = 1 and ê · k̂ = 0, we arrive at

εiklεjmnk̂
kêlk̂mên = δij − êiêj − k̂ik̂j . (36)

Plugging this back in we finally get

Tij = ε0E
2
0 cos2 S kikj = −u k̂ik̂j . (37)

There is a simpler way to arrive at this result. First study the case where k̂ = ẑ, as in Griffiths
problem 9.12. There, the choice of coordinate axes were totally arbitrary, so we must be able to
write the stress tensor in a way that doesn’t depend on choice. Now identify the equality of the two
expressions Tij = −uk̂ik̂j in that problem. Since this result does not depend on choice of coordinates,
we can promote the k̂ = ẑ result to be valid for any k̂. A slightly more justified approach is to transform
the tensor result from the k̂ = ẑ case by applying the correct rotations to transform ẑ to point in the
correct direction. This requires knowing how tensors (or at least matrices) transform under a rotation.
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