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Problem Set 2 — SOLUTIONS

Due: Weds., Feb. 12, 2020, by 5PM

As with research, feel free to collaborate and get help from each other! But the solutions you hand in
must be your own work. All book problem numbers refer to the third edition of Griffiths, unless otherwise
noted. I know we don’t all have the same edition, so I also briefly describe the topic of the problem.

1. Griffiths problem 7.30 (Mutual inductance between two tiny wire loops).
Solution:

(a) Since mutual inductance is reciprocal, we can take either loop as having a sustained current, and
compute the current induced in the other. Put loop 1 at the origin. If loop 1 has current I1, it
generates approximately B1 = µ0

4π
1
r3 I1[3(a1 · r̂) r̂ − a1]. Then the flux through loop 2 is Φ2 =

B(r = r2)·a2 = µ0
4π

1
r3 I1[3(a1 · r̂)( r̂ ·a2)−a1 ·a2] = MI1. ThusM = µ0

4π
1
r3 [3(a1 · r̂)( r̂ ·a2)−a1 ·a2]

which is clearly symmetric under the exchange 1↔ 2.
(b) Due to the changing current I2(t) 6= const., there will be an EMF in loop one, E1 = −M d

dtI2. If a
current controller on loop 1 is keeping its current at a constant I1 then the work it’s doing per
unit time is dW

dt = −E1I1 = MI1
d
dtI2. Integrate this over the time it takes to change the current

in loop 2, but the whole thing is just a constant times the total derivative d
dtI2. Thus the work

that the current controller performs is W = MI1I2 = µ0
4π

1
r3 [3(m1 · r̂)( r̂ ·m2)−m1 ·m2] where

m1 = a1I1 and similarly for loop 2. This is the same as Eq. (6.35) except for a minus sign. That
equation only accounted for the energy in the fields, whereas here we have the energy in the source
currents as well. The fact that the sum of (fields+sources) is the same as (-fields) is extremely
common in linear theories (such as electromagnetism) and can be explained more deeply from a
Lagrangian or Hamiltonian point of view.

2. Griffiths problem 7.53 (ratio of EMFs in a transformer).
Solution: Consider an individual turn of the winding of either the primary or secondary coil. Suppose
the amount of flux through this one turn is Φ. Then the amount of flux through the primary and secondary
is (respectively) Φ1 = N1Φ and Φ2 = N2Φ. Thus the respective EMFs are E1 = − d

dtΦ1 = −N1
d
dtΦ and

similarly E2 = −N2
d
dtΦ. Thus we immediately find E1/E2 = N1/N2.

3. Suppose we have two circuits – of any geometry! – at a distance R apart from each other. As R increases,
the mutual inductanceM will change as a function of R. Make an argument for the asymptotic behavior
of M as a function of R at very large R, for example some function like M(R) ∼ e−R (this is not the
answer, but just demonstrating that we’re looking for an asymptotic function).
Solution: If the separation is very large compared to the characteristic size of each circuit, R� s, we
can use the multipole expansion to write B as a power series in (s/R)k. Recall that for the magnetic
field, unlike the electric field, there is no monopole field where Emono ∼ 1/R2. Instead, the leading
term in the magnetic field is the dipole term, Bdip ∼ 1/R3 (unless the circuit is designed to make the
dipole moment vanish).
Therefore, at the location of circuit 2, we would compute (approximately)

Φ2 = MI1 =
∫

circ. 2
B1 · d2a2 ∝

I1

R3 . (1)

This suggests that M ∝ R−3 when R� s.
Try to remember this magnetostatic result for when we get to radiation!
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4. Much of the interstellar medium (ISM) is very low number density, typically n ≈ 1atom/cm3 (you can
assume it is entirely Hydrogen). There are magnetic fields permeating the galaxy with strengths like
B ≈ 10µG (microGauss).

(a) What is a typical energy density of the magnetic field in the ISM?
Solution: Energy density in the magnetic field is uB = 1

2µ0
B2 ≈ 4× 10−13J/m3 (in SI units) or

≈ 4× 10−12erg/cm3 (in cgs units).
(b) Suppose there is equipartition of energy between magnetic energy density and thermal energy

density (which of course depends on density and temperature). What is a typical temperature of
the ISM?
Solution: Assuming equipartition, we would expect uB ≈ uth, where the energy density in a
thermal gas is uth = n〈E〉 where 〈E〉 is the average energy per particle and n is the number
density. The average energy per degree of freedom is 1

2kBT where kB is Boltzmann’s constant.
Most of the gas in the ISM is a single Hydrogen atom, so it only has translation degrees of freedom
(no rotational or internal), so 〈E〉 = 3

2kBT . Therefore we expect uB = 3
2nkBT and can solve for

temperature T = B2

3µ0nkB
≈ 2 × 104K. This is not too far off from temperatures of the “warm

neutral medium.”

5. A highly conducting, magnetized plasma. Consider a plasma with a conductivity1 σ, charge
density ρ (that varies throughout the plasma), and where at each point the particles are moving with
velocity v (that also varies from place to place). Ohm’s law says that the current density is

J = σf = σ (E + v ×B) . (2)

(a) Suppose the conductivity σ is taken to infinity, while the current density J = ρv remains finite.
What relationship does this imply between the electromagnetic fields?
Solution: For J to remain finite while σ → ∞, we need E + v ×B → 0 at the same speed as
1/σ → 0. Thus we end up with

E = −v ×B . (3)

(b) From the previous answer, what do you know about E ·B?
Solution: SinceE is the cross product of something withB, the electric field must be perpendicular
to the magnetic field, so

E ·B = 0 . (4)

(c) Write v as the sum of two vectors, v‖ and v⊥ which are parallel and perpendicular to B. Find an
expression for v⊥ terms of E and B.
Solution: We write v = v‖B̂ + v⊥ where v⊥ ·B = 0 and B̂ = B/|B|. Then in Eq. (3), only v⊥
contributes to the cross product, E = −v⊥ ×B. This equation tells us that v⊥ makes a right
angle with both B and E, so it is proportional to E ×B with some coefficient. You can plug in
this ansatz and solve for the coefficient. Alternatively, you can take the cross product of the whole
equation with B,

B ×E = −B × (v⊥ ×B) (5)
= −[v⊥(B ·B)−B(v⊥ ·B)] = −B2v⊥ , (6)

since v⊥ is perpendicular to B. Thus we have v⊥ = E ×B/B2 .

This scenario is actually applicable to many astrophysical plasmas! We will continue with this problem
another week.

1We will not refer to the resistivity, 1/σ, which is sometimes denoted ρ. Instead we reserve the symbol ρ for the charge
density.
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6. Griffiths 7.47 (3rd edition) [7.49 in the 4th edition] (getting E in terms of the vector potential).
Solution:

(a) (In the 3rd edition): In magnetostatic we have ∇ ·B = 0 and ∇×B = µ0J . Biot-Savart says
that a magnetic field that solves this is B = µ0

4π
∫

J ′× r̂
r2 d3r′. In parallel, the equations for induced

electric fields are ∇ · E = 0 (no charges, just induced fields) and ∇ × E = − ∂
∂tB. So we can

take Biot-Savart and replace B with E on the left-hand side if we replace µ0J with −∂B
∂t on the

right-hand side. This gives the desired equation,

E = −1
4π

∂

∂t

∫
B′ × r̂

r2 d3r′ . (7)

(b) From the earlier problem, A depends on B in the same way that B depends on µ0J . So replacing
in Biot-Savart gives

A = 1
4π

∫
B′ × r̂

r2 d3r′ . (8)

Comparing Eqs. (7) and (8) we see that E = −∂A/∂t.
(c) Because electrodynamics is linear, we can superimpose the following two results. First, just due to

stationary charge density, which is not changing, we get an electric field that vanishes inside the
shell, and outside is given by ECoul. = r̂ Q

4πε0r2 , where Q = 4πR2, or ECoul. = r̂ σR
2

ε0r2 . Second, from
the currents which slowly change with time. We can take the result for AFarad. from Ex. 5.11, as
long as the frequency ω(t) changes very slowly in time (i.e. dω/dt << ω2). That result was

AFarad. =
{
µ0Rωσ

3 r sin θφ̂ , (r < R),
µ0R

4ωσ
3

sin θ
r2 φ̂ , (r > R).

(9)

Now we consider ω = ω(t) to be a function of time, and use EFarad. = −∂AFarad./∂t to get the
contribution from the current. Finally, the total electric field is the sum E = ECoul. +EFarad.,

E =
{
µ0Rω̇σ

3 r sin θφ̂ , (r < R),
σR2

ε0r2 r̂ + µ0R
4ω̇σ

3
sin θ
r2 φ̂ , (r > R).

(10)
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