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Why test GR?

Gab = 8πT̂ab

General relativity successful but incomplete
• Can’t have mix of quantum/classical
• GR not renormalizable
• GR+QM=new physics (e.g. BH information paradox)

Empiricism
Ultimate test of theory: ask nature
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[Baker, Psaltis, Skordis (2015)]
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Tests of the past
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Eddington 1919

Recommended reading: Kennefick [0709.0685]
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Mercury’s pericenter precession

• LeVerrier (1859): 526.7”/century, discrepant by 43”/century.

Venus Earth Mars Jupiter Saturn Uranus Total
280.6 83.6 2.6 152.6 7.2 0.1 526.7

• Einstein to Sommerfeld (Dec. 9, 1915):

“Wie kommt uns da die pedantische Genauigkeit der
Astronomie zu Hilfe, über die ich mich im Stillen früher oft
lustig mach!”

How helpful to us here is astronomy’s pedantic accuracy,
which I often used to ridicule secretly!

Leo C. Stein (Caltech) Present and future tests of GR 6



Leo C. Stein (Caltech) Present and future tests of GR 7



Solar system tests
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Solar system tests
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Binary pulsar tests

Keplerian orbits: parameters - observables = 2

  Norbert Wex / 2016-Jul-19 / Caltech

   The mass-mass diagram for the Hulse-Taylor pulsar
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where m1 is the pulsar mass, aR is the semimajor axis
of the relative orbit, S1 = I1(2⇡f) is the magnitude of
the pulsar spin angular momentum, and I1 is its mo-
ment of inertia. The fourth term of Eq. 13 results from
the changing projection of the line of sight onto the or-
bital plane due to proper motion, with µ and ⇥µ respec-
tively the amplitude and position angle of proper motion
and ⌦ the position angle of the line of nodes (Kopeikin
1996). The final term of Eq. 13, involving changes in the
Doppler factor D of Eq. 1, is caused by the relative line-
of-sight galactic accelerations of the solar system and the
binary system.

The above equations demonstrate that measurements
of ė or ẋ, along with experimental or theoretical determi-
nations of some of the other quantities appearing therein,
can usefully constrain yet others.

4. RESULTS OF THE FITS

We fitted the parameters discussed above to the full
set of TOAs, using the TEMPO software, as modified
by us.1 See Tables 1 and 2 for our results and their es-
timated uncertainties. The uncertainties quoted therein
represent the standard errors from the TEMPO fit (ex-
cept as noted). This convention di↵ers from our previous
practice, wherein many uncertainties were instead esti-
mated from fitted parameter variations across multiple
reasonable fits. While the old procedure facilitated the
incorporation of some systematic uncertainties into the
error budget; the more stable recent instrumental config-
urations appear to minimize such e↵ects.

Some of the fitted parameters shifted by several � with
respect to the values reported in Weisberg et al. (2010).
The shifts can all be attributed to the new incorporation
of a frequency and time o↵set for each WAPP observ-
ing session and center frequency in order to account for
geodetic-precession-induced profile changes (see §2), and
to our new procedure of fitting for rather than freezing
at 0 the parameter ẋ. The latter procedure also led to
a significantly larger uncertainty in the fitted value of �
and in quantities derived therefrom.

The astrometric and spin solutions are listed in Table
1. These are quite similar to those given in Weisberg
et al. (2010), except that our longer post-glitch base-
line made it clear that the previously discovered glitch at
MJD ⇡ 52770 is better modeled with the addition of a
change in spin frequency derivative, �ḟ . There remains
only one known glitch having a significantly smaller value
of �f/f [in globular cluster millisecond PSR B1821-24
(Mandal et al. 2009)], although several of magnitude sim-
ilar to the one tabulated here are now known. [See the
online Jodrell Bank Pulsar Glitch Catalogue4 (Espinoza
et al 2011)]. Note that, as with Weisberg et al. (2010),
ten higher-order spin derivatives were also fitted for to

4 http://www.jb.man.ac.uk/pulsar/glitches.html

Table 1
Astrometric and Spin Parameters

Parameter Valuea

t0 (MJD)b . . . . . . . . . . . . 52984.0
↵ (J2000) . . . . . . . . . . . . . 19h15m27.s99942(3)
� (J2000) . . . . . . . . . . . . . 16�06027.003868(5)
µ↵ (mas yr�1) . . . . . . . . �1.23(4)
µ� (mas yr�1) . . . . . . . . �0.83(4)
f (s�1) . . . . . . . . . . . . . . . 16.940537785677(3)
ḟ (s�2) . . . . . . . . . . . . . . . �2.4733(1) ⇥10�15

Glitch Parameters

Glitch epoch (MJD). . . 52777(2)
�f (s�1) . . . . . . . . . . . . . 5.49(3) ⇥10�10

�ḟ(s�2) . . . . . . . . . . . . . . �2.7(1) ⇥10�18

a Figures in parentheses represent formal TEMPO
standard errors in the last quoted digit, except for
the glitch parameters. The stated uncertainty in
glitch epoch results from empirically varying the
glitch epoch until ��2 corresponds to the 68%
confidence level; the quoted uncertainties in the
other glitch parameters were derived from their
variations as the glitch epoch was varied over the
chosen range.
b This quantity is the epoch of the next six mea-
surements tabulated here.

Table 2
Orbital Parameters

Parameter Valuea

T0 (MJD) . . . . . . . 52144.90097849(3)
x ⌘ a1 sin i (s). . . 2.341776(2)
e . . . . . . . . . . . . . . . 0.6171340(4)
Pb (d) . . . . . . . . . . . 0.322997448918(3)
!0 (deg) . . . . . . . . 292.54450(8)
h!̇i (deg / yr) . . . 4.226585(4)
� (ms) . . . . . . . . . . 0.004307(4)
Ṗ obs

b . . . . . . . . . . . . �2.423(1) ⇥10�12

�obs
✓ . . . . . . . . . . . . . 4.0(25) ⇥10�6

ẋobs . . . . . . . . . . . . . �0.014(9) ⇥10�12

ėobs (s�1) . . . . . . . 0.0006(7) ⇥10�12

Shapiro Gravitational Propagation Delay Parameters

Damour & Deruelle (1986) Parametrization

s . . . . . . . . . . . . . . . 0.68+0.10
�0.06

r (µs) . . . . . . . . . . 9.6+2.7
�3.5

Freire & Wex (2010) Parametrization

& . . . . . . . . . . . . . . . 0.38(4)
h3 . . . . . . . . . . . . . . 0.6(1) ⇥10�6

a Figures in parentheses represent formal TEMPO stan-
dard errors in the last quoted digit. The DD Shapiro pa-
rameters s and r, which are highly covariant, and their
uncertainties, were refined through a process illustrated
in Fig. 2.

eliminate the e↵ects of timing noise. Their values are
not shown in the Table as they do not correspond to
meaningful physical parameters.

Table 2 displays the results of our fit to orbital param-
eters, including the eight final entries, which are fitted
here for the first time in this system. Note that the first
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Binary pulsar tests

Keplerian orbits: parameters - observables = 2

  Norbert Wex / GR21 / 2016-Jul-11

   The GR mass-mass diagram of the Double Pulsar

45

  Norbert Wex / The Many Faces of Neutron Stars / MIAPP / Sep 9th, 2015

The Double Pulsar

GR mass-mass diagram

Mass ratio mA/mB and 

6 post-Keplerian parameters 
➡ periastron precession
➡ time dilation
➡ range (r) and shape (s) of  

Shapiro delay
➡ geodetic precession
➡ gravitational wave damping

➜ 5 tests

PpK = f(PK; mA, mB)

Kramer et al. 2006, Breton et al. 2008

sion rate of WB = 4.77°−0°.65
+0°.66 year−1, we derive

c2sB
G

! "

¼ 3:38þ0:49
−0:46 . Every successful theory of

gravity in the given generic framework must
predict this value: These observations provide a
strong-field test of gravity that complements and
goes beyond the weak-field tests of relativistic
spin precession (26). In GR, we expect to mea-

sure c2sB
G

! "

GR
¼ 2þ 3

2
mA
mB

¼ 3:60677 T 0:00035,

where we have used the masses determined from
the precisely observed orbital precession and the
Shapiro delay shape parameter under the as-
sumption that GR is correct (14). Comparing the
observed value with GR's predictions, we find
c2sB
G

! "

obs
= c2sB

G

! "

GR
¼ 0:94 T 0:13. Hence, GR

passes this test of relativistic spin precession in a
strong-field regime, confirming, within uncertain-
ties, GR's effacement property of gravity even for
spinning bodies, that is, the notion that strong in-
ternal gravitational fields do not prevent a compact
rotating body from behaving just like a spinning
test particle in an external weak field (27).

The spin precession rate, as well as the tim-
ing parameters entering in the calculation of
c2sB
G

! "

, are all independent of the assumed theory

of gravity. If the main contribution limiting the
precision of this new strong-field test comes
from the inferred spin precession rate, we expect
that the statistical uncertainty should decrease
significantly with time, roughly as the square of
the monitoring baseline for similar quantity and
quality of eclipse data. The contribution of sys-
tematics to the error budget should also decrease,
but its functional time dependence is difficult to

estimate. Although the orbital and spin phases of
pulsar B are input variables to the eclipse model,
our ability to determine the orientation of pulsar
B in space does not require the degree of high-
precision timing needed for measurement of post-
Keplerian parameters; evaluating spin phases to
the percent level, for instance, is sufficient. There-
fore, the intrinsic correctness of the model and its
ability to reproduce future changes in the eclipse
profile because of evolution of the geometry
are the most likely limitations to improving the
quality of this test of gravity, at least until the
measured precession rate reaches a precision
comparable with the timing parameters involved

in the calculation of c2sB
G

! "

. Better eclipse mod-

eling could be achieved from more sensitive
observations, and thus new-generation radio
telescopes such as the proposed Square Kilome-
ter Array could help make important progress.
Pulsar A does not show evidence of precession
(28, 29) likely because its spin axis is aligned
with the orbital angular momentum; it should
therefore always remain visible, thus allowing
long-term monitoring of its eclipses. Pulsar B,
however, could disappear if spin precession
causes its radio beam to miss our line of sight
(21). In this event, we would need to find a way
to circumvent the lack of observable spin phases
for pulsar B, which are necessary to the eclipse
fitting.
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Fig. 4. Mass-mass diagram
illustrating the present tests
constraining general rela-
tivity in the double pulsar
system. (Inset) An expanded
view of the region where
the lines intersect. If gen-
eral relativity is the cor-
rect theory of gravity, all
lines should intersect at
common values of masses.
The mass ratio (R = xB/xA)
and five post-Keplerian pa-
rameters (s and r, Shapiro
delay shape and range; ẇ,
periastron advance; Ṗb, or-
bital period decay due to
the emission of gravitation-
al waves; and g, gravita-
tional redshift and time
dilation) were reported in
(14). Shaded orange re-
gions are unphysical solu-
tions because sini ≤ 1,
where i is the orbital in-
clination. In addition to al-
lowing a test of the strong-field parameter ðc2sB

G Þ, the spin precession rate of pulsar B, WB, yields a new
constraint on the mass-mass diagram. M☉ is the mass of the Sun.

www.sciencemag.org SCIENCE VOL 321 4 JULY 2008 107
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Only 10 numbers in parametrized post-Newtonian
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The Confrontation between General Relativity and Experiment 33
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LIGO’s tests
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LIGO’s tests

Two tests I like:
• Any deviation from GR must be below 4% of signal power
• Test of dispersion relation
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LIGO’s tests

One test I do not like:

• Insert power-law corrections to amplitude and phase (u3 ≡ πMf)

h̃(f) = h̃GR(f)× (1 + αua)× exp[iβub]

• Parameters: (α, a, β, b)

• Inspired by post-Newtonian calculations in beyond-GR theories
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Leo’s personal classification of tests
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Kinematics vs. Dynamics

Kinematics: study geometry, ignore equations

Dynamics: which equations are being satisfied?
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Theory-specific vs. theory-independent

Theory-specific
• Pro: Easy to interpret. Bayesian model comparison
• Con: Lots of work for each theory

Theory-independent
• Pro: Mapping =⇒ reuse calculations
• Con: Interpretation unclear. Is parameterization complete?
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Tests of today near future
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Pulsar timing

• Integrate longer, find more relativistic systems, better technology
• Higher post-Newtonian measurements (I, EOS-dependent)
• Triple system PSRJ0337+1715

• Pulsar around SMBH
• Pulsar timing arrays
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Gravitational waves

• More detectors and orientations
• Speed of propagation
• Polarization content
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GWs from binary inspirals

Computed in a few specific theories.
Motivated parameterized post-Einstein framework
• Insert power-law corrections to amplitude and phase (u3 ≡ πMf)

h̃(f) = h̃GR(f)× (1 + αua)× exp[iβub]

• Parameters: (α, a, β, b)

• Inspired by post-Newtonian calculations in beyond-GR theories
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“Bumpy” black holes

• Stationary, axisymmetric spacetimes have four functions of two vars.
• Many formalisms to parameterize in countable DOF. Psaltis,
Johannsen, Rezzolla, . . .

• Accretion disk modeling, shadow, spectrum. Broderick, Johannsen,
Psaltis, . . .
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“Bumpy” black holes

• Find pulsar around bumpy SMBH [Psaltis, Wex, Kramer 2015]

Leo C. Stein (Caltech) Present and future tests of GR 22



Today’s shortcomings

• Electromagnetic tests
• Degeneracy between theory of gravity and plasma prescription, NS EOS

• Theory-specific tests
• Very few detailed calculations beyond GR

• Theory-independent tests
• How do parameterizations connect with theories?
• Are parameterizations sufficients? Well-motivated?
• Lacking guidance from specific examples
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The future
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#squadgoals

Challenge to the community:
• Investigate degeneracies between matter and gravity.
• Find spacetime solutions in theories beyond GR
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Why it’s hard

From Lehner+Pretorius 2014:

• Don’t know if other theories have good initial value problem
Example: Delsate+ PRD 91, 024027, dynamical Chern-Simons
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A solution

• Treat every theory as an effective field theory (EFT)
• Already do this for GR. Valid below some scale
• Theory only needs to be approximate, approximately well-posed

General relativity

Special relativity

post-Newtonian
G→0

v/c→0
Standard Model

QED

Maxwell
h→0

• Example: weak force below EWSB scale (lose unitarity above)
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A solution

General relativity

Special relativity

post-Newtonian
G→0

v/c→0
Standard Model

QED

Maxwell
h→0

• Same should happen in gravity EFT:
lose predictivity (bad initial value problem) above some scale

• Theory valid below cutoff Λ� E. Must recover GR for Λ→∞.
• Assume weak coupling, use perturbation theory

Example: Dynamical Chern-Simons gravity
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Black holes in dCS

• a = 0 (Schwarzschild) is exact solution with ϑ = 0
• Rotating BHs have dipole+ scalar hair

LCS, PRD 90 044061 (2014) [arXiv:1407.2350]

• Post-Newtonian of BBH inspiral in
PRD 85 064022 (2012) [arXiv:1110.5950]

• More updated phenomenology in
CQG 32 243001 (2015) [arXiv:1501.07274]
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• General relativity must be incomplete
• New opportunity to test GR in strong-field
• Present tests’ shortcomings

• Almost no theory-specific tests
• Theory-independent tests need more guidance

• Challenge: Find spacetime solutions in theories beyond GR
• My contribution: First binary black hole mergers in dynamical

Chern-Simons gravity
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